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Abstract

Climate risk threatens Sub-Saharan Africa’s rain-fed agriculture. Using micro-data from six countries,
I show that a one-week delay in the onset of the rainy season reduces yields by 2% and consumption by
1%. Damages disproportionately harm the most vulnerable, with the effects being most pronounced on
female-managed plots, while education and wealth build resilience. Farmers adapt by delaying planting,
but this is insufficient due to informational frictions. False onsets—misleading early rains followed by
a dry spell—trigger premature planting, increasing damages. The negative impacts are concentrated in
locations experiencing long-term climatic shifts, indicating a persistent failure to adapt. Projecting these
damages forward reveals a substantial threat: cumulative discounted losses from 2025 to 2050 could
reach up to 10% of 2024 real GDP. These findings establish shifts in seasonal timing as a first-order

economic threat and highlight the value of short-range forecasts in mitigating this risk.
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1 Introduction

Sub-Saharan Africa’s reliance on rain-fed agriculture makes its population exceptionally vul-
nerable to weather risk. In a region where approximately 95% of cropland is rainfed and 55-
62% of the workforce is employed in agriculture (IPCC, 2022), shifts in weather patterns pose
a substantial threat to livelihoods. The timing of the rainy season is a particularly important fea-
ture of weather that is often overlooked. The onset of the rainy season has a direct biophysical
impact on agricultural productivity by shifting crops’ exposure to weather conditions through-
out critical growth stages, and an indirect effect through an adaptation channel. Through this
channel, weather is not merely an input but also an uncertain signal that informs farmers’ de-
cisions across several dimensions but most importantly their planting schedule (Kala, 2019).
As climate change evolves, understanding farmers’ adaptation to variation in timing is essen-
tial. This requires both identifying the strategies farmers employ and the frictions that limit
the effectiveness of their responses or turn their heuristics into costly mistakes. First, it can
inform the design of interventions to address the growing impacts of climate change; the strate-
gies farmers already employ are, by revealed preference, those they deem most cost-effective
among their feasible options (Hultgren et al., 2025). Second, it helps identify the most promis-
ing areas for intervention, especially where the adoption of agricultural technologies is low
(Suri et al., 2024).

This paper addresses a central question for climate resilience: How do weather signals shape
the adaptation to, and economic impacts of, shifting seasons? To answer this, the analysis
proceeds in three parts. First, I quantify the causal impacts of short-run variation in the onset of
the rainy season on agricultural yields and household welfare. Second, I examine the adaptation
strategies farmers employ and the informational frictions that limit their response. Finally, I
link these short-run semi-elasticities to long-term climatic trends to project the future economic
damages. The analysis focuses on six Sub-Saharan African countries: Ethiopia, Malawi, Mali,
Niger, Nigeria, and Tanzania, which collectively represent 35% of the region’s population and
40% of its economy (The World Bank, 2025). Because the start of the rainy season cannot be
observed directly, I use daily weather and soil data to identify the first date when conditions are

suitable for planting.

Before the main empirical analysis, I establish the climatic context by documenting a significant
long-term shift in the timing of the rainy season. The data reveal a stark trend for the rainy
season onset: across all six countries, it has shifted significantly later between 1979 and 2024.
The magnitude of this delay ranges from approximately 6 days in Tanzania to over 25 days in
Nigeria. The trend for cessation dates is more varied; in some countries, such as Niger and
Nigeria, the season’s end has also become later, while in others like Mali and Tanzania, it now
arrives earlier. The net result for most countries is a discernible shortening of the rainy season.

For example, the growing period in Mali has shortened by approximately 26 days, while in



Niger, where the later onset was offset by a later cessation, the length of the rainy season has

remained broadly unchanged.

My identification strategy is designed to first quantify the net economic impacts of onset timing,
and then to disentangle the role of the adaptation channel in driving these impacts. The strategy
exploits substantial year-to-year variability in onset timing around long-term trends, focusing
on short-run, plausibly exogenous shocks. To isolate these shocks, I compare variation within
locations over time, controlling for local trends and regional conditions using a multi-way
fixed effects structure that includes high-resolution grid-cell fixed effects and climatic-area-by-
country-by-year fixed effects. To control for the direct biophysical channel—such as changes
in precipitation patterns resulting from a delayed rainy season—the model includes a rich set
of weather controls. By accounting for these aggregate weather impacts, the strategy estimates

the net effect of a pure timing shock, distinct from overall seasonal weather.

I find that a one-week delay lowers crop yields by approximately 2%. This effect is asymmetric,
driven entirely by later-than-usual onsets, and is also short-lived, with no spillover to future
agricultural seasons. These findings are robust across several specification checks, and the

statistical inference holds when accounting for spatial correlation in onset dates.

A delayed onset also harms household welfare, lowering per capita consumption by 1-1.2% per
week of delay and worsening women’s nutritional status. It is therefore critical to understand
if and how farmers respond. I find that they primarily adjust along two low-cost margins: they
plant later and use more seeds, with limited evidence of other short-run changes in fertiliser
use, crop choice, or labour allocation. Focusing on the most intuitive strategy—shifting the
planting schedule—, the analysis reveals that the adjustment is insufficient, as a one-week
delay in the onset leads to a planting delay of just over half a day. To confirm that this muted
adaptation response is a real phenomenon and not merely a statistical artifact driven by the
coarse, monthly nature of the survey data, I design a simulation exercise to correct for this
measurement error and find that the true daily-level planting adjustment, while larger than
the initial estimate, remains modest. The key puzzle, therefore, is why farmers do not delay

planting more substantially when the rainy season arrives late.

Part of the answer lies in exploring who is most affected and how they adapt. The damages
from a delayed onset are not evenly distributed; the negative impacts are borne disproportion-
ately by the most vulnerable, with plots managed by women suffering significantly larger yield
losses. Conversely, resilience is systematically linked to several farmer characteristics which
induce heterogeneous incentives for adaptation. Education and household wealth make farm-
ers less constrained, which should, in theory, improve their ability to execute optimal adaptive
strategies like adjusting planting dates. In contrast, technologies such as irrigation make them

less vulnerable to the timing of the onset, weakening their incentive to adapt on this margin.

This heterogeneity raises an important question: do these resilient farmers achieve better out-



comes because they are better at adapting their planting schedules? The evidence suggests this
is largely not the case. An analysis of planting decisions reveals no statistically significant dif-
ference in timing adjustments for farmers with more education or more assets. The findings
for technology are mixed and align with their differing incentives: access to irrigation is as-
sociated with a tendency to delay planting less, likely because a reliable water source reduces
farmers’ dependence on the rainy season for optimal growing conditions. In contrast, farmers
using improved seeds are the only group to show a significantly more responsive timing adjust-
ment. The fact that most resilient groups do not exhibit superior adaptation on this key margin
suggests their resilience stems from an ability to buffer shocks rather than from superior timing

decisions.

The answer to both puzzles—why adaptation is insufficient overall, and why superior adapta-
tion on timing is not observed even among less constrained farmers—points to an informational
barrier. First, farmer awareness of the underlying shock appears low and non-linear. House-
holds are not more likely to report having suffered a negative shock to their crops in response to
a typical late onset; awareness is triggered only by extreme events when the onset is exception-
ally late. Even then, farmers appear to misattribute the cause, reporting the shock as a drought

rather than linking the damage to the shift in seasonal timing.

Second, farmers can be misled by incorrect signals. I introduce the concept of false onsets:
early rains followed by a dry spell. Farmers often adapt by following a common heuristic: they
wait for a significant rainy event, often verifying the soil moisture, and then plant immediately
after (see, for instance Marteau et al. 2011). A false onset is so damaging because it turns this
reasonable strategy into a costly mistake. During the dry spell following a false onset, crops are
likely to fail. Indeed, I find that farmers exposed to a false onset during a later-than-usual season
plant earlier, which then requires replanting when the original seeds fail to grow. Ultimately,
this combination of a false start and a late true onset more than doubles the negative impact on

productivity.

The findings in this paper, which estimate the cost of short-run weather variability, have direct
implications for understanding the long-term economic consequences of climate change. The
analysis shows that the negative impact of a delayed onset on productivity is driven entirely
by locations already experiencing a secular trend towards later rainy seasons. This evidence
of a persistent failure to adapt to gradual climatic shifts provides the justification for using the
estimated short-run damages as a guide for future losses. To quantify this threat, I project the
Net Present Value (NPV) of damages to the year 2050. The results are stark: under a Business
as Usual scenario, cumulative discounted losses could reach approximately 10% of real GDP
in 2024 for the most affected country, Mali. While this projection is grounded in observed
behavior, assuming a complete absence of future adaptation may be unrealistic. I therefore
supplement the main analysis by considering two optimistic counterfactuals: one where the

yield impact of onset delays linearly decreases to zero by 2050, and another that accounts for



the mitigating effect of future irrigation expansion. Even under these more optimistic scenarios,
the remaining economic costs are substantial. Furthermore, the analysis reveals a significant
Sustainability Benefit: a less severe climate path could avert over $20 billion in damages in
Nigeria alone. These findings establish that subtle shifts in seasonal timing, a less-studied

feature of climate change, represent a first-order economic threat to livelihoods in the region.

This paper contributes to three main strands of literature. First, it makes a novel contribu-
tion to the literature on adaptation to climate change in low-income settings. A large body of
work, comprehensively reviewed by Carleton et al. (2024), documents how farmers in low-
income settings adapt to weather shocks along various margins. Examples from this literature
are geographically diverse, including studies on adjusting agricultural inputs in Kenya (Jagnani
et al., 2020), investing in irrigation in India (Taraz, 2017), adopting soil and water conserva-
tion practices in Peru (Tambet and Stopnitzky, 2021), and changing land use in both India and
Peru (Aragon et al., 2021). However, this literature has largely focused on responses to shocks
in temperature and total precipitation, with less attention paid to the timing of the rainy sea-
son. This paper argues that this is an important omission because shocks to timing introduce
unique informational frictions, adding a layer of complexity to a setting where learning is al-
ready complex and costly (Laajaj and Macours, 2024). My analysis shows these frictions have
real consequences: farmers’ adaptation is ultimately insufficient. By documenting their spon-
taneous ex-post responses, I find that while the most intuitive margins are adjusting planting
dates and seed use, these adjustments are often too small or poorly timed to prevent losses,

presenting a puzzle as to what limits a more effective response.

Second, this paper contributes to the extensive literature on information and knowledge con-
straints in agriculture. A large body of work documents how farmers may forgo profitable
strategies, particularly technology adoption, because of constraints (for a review, see Suri et al.
2024). I show that the insufficiency of adaptation is driven by two key informational frictions.
The first is a failure of attribution. Because year-to-year onset variation is not always a dis-
crete, extreme event, its impact has low salience. My analysis shows that farmers struggle to
distinguish it from normal productivity fluctuations; only when the delay is large enough do
they report an adverse shock, and even then, they tend to misattribute it to drought rather than
the underlying timing shift. This finding is consistent with Patel (2025), which, in the con-
text of soil salinity and agricultural productivity in Bangladesh, provides a framework where
such attribution failures arise naturally from an identification problem: farmers interpret am-
biguous signals through the lens of their priors, leading to persistent misperceptions, especially
when environmental shifts are subtle rather than salient. This paper provides evidence on this
phenomenon in the context of seasonal timing in SSA. I introduce and test the importance of
the false onset—early rains followed by a dry spell. As climate change systematically delays
the onset, farmers’ search for planting signals increasingly occurs at the wrong time of year,

turning a traditionally reliable heuristic into a costly mistake that more than doubles the neg-



ative impact on productivity. These insights are useful for policy design, as addressing these
informational constraints through tools like reliable short-range forecasts could enhance the
strategies farmers already find intuitive, a potentially more effective approach than promoting
costly and complex technologies that have historically suffered from low take-up (Suri et al.,
2024). Together, these findings motivate the expansion of reliable weather forecasts to serve
as an early-warning system, contributing to recent work on the value of both short-range (Ca-
macho and Conover, 2019; Yegbemey et al., 2023; Rudder and Viviano, 2024) and long-range
forecasts (Giné et al., 2018; Rosenzweig and Udry, 2019; Burlig et al., 2024).

Third, this paper contributes to the literature quantifying the economic impacts of weather
shocks by examining a critical, yet understudied, dimension of weather risk. An extensive
literature provides robust evidence on the impacts of shocks to temperature and rainfall quan-
tity on agricultural and economic outcomes (Deschénes et al., 2009; Deschénes and Moretti,
2009; Barreca et al., 2016; Aragon et al., 2021). This paper complements this body of work
by analysing the economic consequences of a different feature of weather: the timing of the
rainy season. In the rain-fed agricultural systems that dominate Sub-Saharan Africa, a delay
in the onset can shift critical crop growth stages into periods of greater heat stress or misalign
harvest with labor cycles, even when total seasonal rainfall is normal. Despite its agronomic
importance, the economic literature on onset timing is sparse, with the few existing studies
focused on India (Amale et al., 2023; Burlig et al., 2024). I complement existing evidence by
providing multi-country evidence from Sub-Saharan Africa, the region most reliant on rain-fed
agriculture. To do so, I introduce a robust, high-resolution agronomic measure of onset, trace
its effects beyond agricultural production to welfare indicators, and uncover how these damages
are borne disproportionately by the most vulnerable farmers (Udry, 1996). By first estimating
the impact of onset timing and then identifying its mechanisms, my findings show that these
damages stem largely from responses to uncertain signals, not just from inevitable biophysical

constraints.

The rest of the paper is structured as follows. Section 2 discusses the causal pathways linking
the rainy season onset to crop yields. Section 3 describes the data sources and construction of
key variables. Section 4 presents the evidence on long-term trends in the rainy season calendar.
Section 5 outlines the empirical strategy in detail. Section 6 presents the main results, and

Section 7 discusses the findings and concludes.

2 Linking the onset of the rainy season to crop yields

The timing of the rainy season onset affects agricultural productivity through two distinct path-
ways, as illustrated in Figure 1: a direct biophysical channel that impacts crop growth, and an

indirect adaptation channel that operates through farmer decision-making.



The biophysical channel: Direct impacts on crop growth. Shifts in the actual onset date of
the rainy season directly change the biophysical conditions crops experience throughout their
development. The timing of the onset largely dictates when the entire growing period begins.
This shift means all subsequent crop life cycle stages occur at different points in the calendar
year, potentially exposing them to less favourable weather and soil conditions regarding tem-
perature, sunlight, and moisture, even if the total length of the season were unchanged. For
instance, critical phases like germination, flowering, or grain and tuber filling might be pushed
into periods of excessive heat or suboptimal solar radiation, thereby negatively impacting yields
irrespective of season length (Jigermeyr and Frieler, 2018; Yang et al., 2024). Of course, a
common direct consequence of a delayed onset is also a shortening of the effective growing
season, a trend observed in the study regions (see Section 4). Such a reduction in available
time can prevent crops from accumulating sufficient warmth or completing their development,
leading to lower yields. Lastly, these onset-driven climatic shifts can indirectly lower yields by
changing the exposure to pests and diseases, whose life cycles also respond to environmental
changes (Yang et al., 2024).

The adaptation channel: Weather as a signal for farmer decisions. Beyond its direct effects,
year-to-year variation in the onset is an important source of uncertainty and a critical signal
for agricultural producers. In anticipation of, and in response to, this signal, farmers must
make crucial management decisions that significantly influence eventual crop yields. These
decisions span a range of practices, including the choice of crops to plant, the selection of
specific crop varieties, the quantity and type of inputs (such as seeds, fertilisers, and pesticides),
the allocation of labour, and, crucially, the timing of planting activities (Jigermeyr and Frieler,
2018; Marteau et al., 2011; Minoli et al., 2022). To interpret this uncertain signal, farmers often
rely on local knowledge and heuristics, such as observing rainfall patterns and soil moisture,
to guide their planting decisions and mitigate risks like early-season dry spells (Wolf et al.,
2015; Marteau et al., 2011). The effectiveness and feasibility of these adjustments in the face
of onset variability are central to understanding agricultural outcomes and represent the core
of the adaptation channel. Persistent changes in seasonal timing can also make traditionally
grown crop varieties less suitable over time, requiring farmers to adapt their crop choices in the

long run.

The role of other timing features. While both the length and cessation of the rainy sea-
son are important, the relationship with productivity is not always straightforward. For exam-
ple, an extended season is not inherently superior if those additional days expose the crop to
end-of-season stresses like drought or increased pest pressure. Indeed, adaptive farming prac-
tices might involve selecting cultivars or adjusting planting schedules to achieve a strategically
shorter but better-timed growing period to avoid such terminal stresses (Minoli et al., 2022).
As the empirical evidence detailed in Section 6 will show, it is the year-to-year change in onset

timing that is the primary aspect of seasonal timing that causally affects productivity in the



sampled countries, with cessation timing and overall length having less significant independent

effects once the onset is controlled for.

3 Data

I combine detailed household and plot-level survey data with high-resolution climate informa-
tion to analyse the impact of rainfall onset timing. Appendix A.l provides further details on

variable construction and specific data sources.

Household, individual, and plot-level data. The core household, individual, and plot-level
information is sourced from a recently released harmonised panel dataset compiling the Liv-
ing Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA) waves for
seven Sub-Saharan African countries (World Bank, 2024). I use data for six of these countries:
Ethiopia, Malawi, Mali, Niger, Nigeria, and Tanzania. While some central and northern regions
of Ethiopia experience a secondary, sporadic rainy season (the belg), the analysis focuses on the
main agricultural cycle tied to the primary kiremt rainy season. Uganda is excluded from the
analysis because its predominantly bimodal rainfall pattern is unsuitable to my current method-
ology for identifying a single main rainy season onset, which relies on defining a consistent
agroclimatic year. The included survey waves span the period from 2008 to 2022. Although
the harmonised dataset is meant to be a panel, I treat the data as repeated cross-sections as
agricultural plots cannot be reliably tracked across waves. Appendix A.l provides a detailed

list of the specific survey waves included for each country (see Table A2).

The LSMS-ISA surveys are designed to be representative of the household and smallholder
agriculture sectors within the sampled countries, though it is important to note that specific
sampling and coverage might vary slightly by country and wave.' Figure A1 shows the broad
geographical coverage of the sampled LSMS communities. Locations are spread widely across
the geography of each country. Naturally, the sample excludes hyper-arid areas where agricul-
ture is not practiced, which is most evident in the desert regions of northern Mali and Niger. The
surveys collect comprehensive data relevant to this study. The household questionnaire records
demographics, education, labour participation, household nonfarm activities, shocks experi-
enced, and crucially provides an annualised per capita measure of consumption. The agri-
cultural questionnaires gather detailed plot-level information, including inputs, crop choices,
yields, and farming practices such as planting and harvest timing. For all included surveys, I
focus on the main agricultural growing season. Importantly, the harmonised dataset provides
plot area measurements based primarily on Global Positioning System (GPS) readings, ad-
dressing known inaccuracies in self-reported areas; imputation methods based on self-reports

and administrative data are used when GPS measures are missing (see World Bank, 2024, for

IRefer to official LSMS-ISA documentation and World Bank (2024) for details.



details). The dataset also provides standardised groupings for crops, which I use to analyse
crop choice decisions.” The harmonised dataset defines the main crop on a plot as the crop

within these categories having the highest reported monetary value.

To construct the final estimating samples, I applied several restrictions. Survey waves without
geocoordinates were excluded. I also excluded the 2019-2021 Tanzania Wave 35, as its multi-
year survey period and lack of planting-year information made it impossible to reliably match
plots to a specific agricultural season. Only plots reporting a complete harvest are included,
as incorporating yields from incomplete harvests could introduce bias into the productivity
estimates. This decision is supported by formal tests showing that the timing of the rainy
season onset does not significantly predict the probability of observing a fully harvested plot;
Table B1, Column (1), presents this result. Lastly, I retain only plots where planting occurred
within the same calendar year as the survey interview, a restriction that drops approximately
5% of plots and primarily excludes perennial crops. These criteria define the final plot-level

sample used for productivity analyses.

After applying these criteria, the final sample for plot-level analysis comprises approximately
130,000 plot-wave observations. For the household-level analyses of consumption, I restrict the
sample to the approximately 29,000 household-wave observations from the agricultural module
that report a complete harvest for all plots. This represents 75% of all household-wave obser-
vations. The individual-level sample includes all working-age individuals from these selected
households.

This restriction on complete harvests for the consumption analysis is necessary because the
surveys provide an annualised consumption measure without specifying its timing relative to
the harvest. Including households yet to complete their harvest would mean comparing post-
harvest households with those still in their lean season, the period between planting and har-
vesting, introducing significant unobserved heterogeneity. While this raises a valid concern
about selection bias—for instance, a late onset could delay a harvest, making it more likely the
survey occurs before completion—I explicitly test for this. Column (2) of Table B 1 confirms that
the onset timing does not significantly predict the probability of observing a complete harvest,
suggesting the restriction does not systematically bias the results. Furthermore, as shown in
Table 2, the main findings on consumption are robust to including all households, regardless
of their main occupation sector. Appendix A.l details the construction of key outcome and

control variables.

Nutritional outcomes from Demographic and Health Surveys. To examine whether the im-
pacts of rainfall onset variability extend to nutritional outcomes, I incorporate data from all 25
available DHS waves for the sampled countries that provide geocoded cluster information. A

detailed list of the specific DHS survey years I included for each country is available in Table

’The categories are barley, wheat, rice, sorghum, maize, millet, perennials such as fruit and tree crops, legumes,
root crops, nuts, and others.



A2. DHS surveys are nationally representative, collecting comprehensive data on health and
population with a particular focus on maternal and child health. Women aged 15-49 are the pri-
mary respondents, providing information on household characteristics, birth histories, wealth,
and human capital, alongside objective anthropometric measurements (weight and height) for

themselves and their children under five.

For this analysis, I primarily use samples of adult female respondents with available objec-
tive anthropometric data: a main sample from agricultural households, and a full sample of all
women to test for spillovers. The key nutritional outcomes I examine for women are weight-
for-height z-scores and indicators for whether she is classified as wasted or underweight. Anal-
yses using data for children under five(weight-for-height z-scores, wasting, underweight) are

presented in the appendix. Appendix A.l details the construction of all nutritional variables.

Rainfall onset and weather variables. I rely on daily climate information sourced from a
dataset of agrometeorological indicators derived from ERAS reanalysis, provided by the Coper-
nicus Climate Change Service (C3S) Climate Data Store (Boogaard et al., 2020). This dataset
covers the period January 1979 to December 2024 at a 0.1° x 0.1° spatial resolution, corre-
sponding to approximately 11 x 11 kilometres at the equator. I extract daily 2-meter minimum
and maximum temperature, 2-meter dewpoint temperature, total precipitation, surface solar ra-
diation, and 10-meter wind speed magnitude. These data provide the basis for calculating the
rainy season onset and for constructing the weather variables used as controls in my empirical

analysis (as detailed in Section 5).

To define the rainy season calendar, I calculate its onset, cessation, and overall length using a
dynamic agronomic model that simulates the daily soil water balance (Takele and Dell” Acqua,
2023). The model requires a defined search window, comprising an earliest possible onset,
a latest possible onset, and a latest possible cessation date. To set these parameters on a
location-specific basis and account for regional differences, I first establish the usual start and
end dates of the wet season by analysing long-term daily rainfall patterns, following Dunning
et al. (2016).” Using these location-specific dates, I define the search window as 90 days be-
fore and after the usual start for the onset, and 90 days after the usual end for the cessation.
Within this window, the model simulates day-to-day changes in soil moisture by combining
daily weather data with information on local elevation (Danielson and Gesch, 2011) and the

soil’s water-holding capacity (Leenaars et al., 2018).

The onset date is then identified based on criteria ensuring sustained water availability suitable
for crop growth: the ratio of actual-to-potential evapotranspiration (ETa/PET) must exceed 0.5
for seven consecutive days, followed by a 20-day period where simulated plant available water
remains above the wilting point. The cessation date is defined as the first day when the ETa/PET

ratio falls below 0.5 for seven consecutive days, followed by 12 consecutive non-growing days

3Appendix A.l provides details on how these typical start and end dates for each location are derived from
historical rainfall data.
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during which plant-available water remains below the wilting point over the root zone. The
length of the rainy season is then calculated as the total number of days from the identified
onset date to cessation date. Finally, the calculated onset and cessation dates for each location

and year are converted into the corresponding week number of the year.

This agronomic definition, grounded in soil water availability, is employed for two primary rea-
sons. First, by incorporating potential evapotranspiration (atmospheric water demand) and soil
water holding capacity, it moves beyond rainfall thresholds to identify when sufficient moisture
is likely available in the root zone to support germination and early plant growth. This provides
a robust indicator of the start of the viable planting window, distinguishing true onsets from po-
tential false starts caused by initial rains followed by dry, high-evaporation conditions. While
the optimal planting date within this window varies depending on the maturation period of spe-
cific crops, this calculated onset marks the earliest point at which planting becomes reliably

feasible for rainfed agriculture.

Second, this focus on soil moisture aligns closely with the heuristics farmers themselves report
using when making planting decisions. Rather than relying solely on rainfall patterns, farm-
ers commonly assess soil moisture directly to judge planting suitability. Evidence supporting
the importance of soil moisture cues in farmer decision-making comes from diverse contexts,
including Ghana (Antwi-Agyei et al., 2022), semi-arid India (Giné¢ et al., 2018), and Niger
(Marteau et al., 2011). Therefore, an onset definition based on simulated soil water balance
provides a measure that is not only agronomically relevant but also resonates with practical

farming strategies.

LSMS-ISA and DHS communities are matched to their corresponding 0.1° x 0.1° ERAS grid
cell using their GPS coordinates to link survey data with the calculated onset week and the
grid-level weather controls derived from the same ERAS5-derived dataset. Finally, to account
for broad agro-ecological characteristics, locations are classified into climatic areas based on
an updated global Koppen-Geiger climate classification (Metzger et al., 2023). The detailed
classes are aggregated into Tropical, Arid, and Temperate zones to ensure sufficient observa-

tions for fixed effect estimation. Appendix A.l provides further details on data processing.

4 The rainy season calendar over time

My analysis primarily focuses on the onset of the rainy season for two main reasons. First,
while the entire rainy season calendar exhibits year-to-year variation, the timing of the onset is
particularly critical. It is around this period that farmers make crucial planting decisions which
have substantial implications for plot productivity (see Section 2). Second, as this section will
show, onset timing across the sampled countries reveals a clear, consistent pattern of change

over recent decades, a characteristic less evident in cessation dates.
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To estimate the trends, I constructed a panel dataset at the 0.1°x 0.1° grid cell level, covering
the period 1979-2024. For each cell and year, I use the day of year (DOY) for the onset,
cessation, and length of the rainy season, as detailed in Section 3. This sample is restricted to
only those grid cells that spatially match the locations of households in the LSMS-ISA surveys.

I estimate trends using a fixed-effects model:
Zy = . + B:.Year, + pp + €4 forl € c (1)

where 7 is the calendar variable for grid cell ¢ in year ¢, and p, represents grid-cell fixed
effects. Standard errors are clustered at the 0.5°x 0.5° grid-cell level (approximately 55 x 55

kilometres).

Figure 2 presents the country-specific trend analyses for the onset variable. The results consis-
tently show that the onset of the rainy season is occurring later across all sampled countries.
The total delay over the historical period is substantial, ranging from 5.8 days in Tanzania to

25.1 days in Nigeria.

Beyond the shift in average onset timing, I also explored whether the year-to-year variability is
changing.* To do this, I de-trended the onset data using the residuals from the superior-fitting
quadratic models. Figure B2 plots the interquartile range (IQR) of these residuals within 5-year
periods, revealing differing trends across the sample. In Ethiopia, Malawi, and Tanzania, there
is an increasing trend in the IQR. This growing unpredictability has direct consequences for
farmers: it makes traditional knowledge less reliable and increases the risk of costly planting
errors, such as being misled by a false onset. Conversely, Mali, Niger, and Nigeria show a
tendency towards decreasing IQR over time. For farmers in these regions, the rainy season,
while still shifting, is becoming more predictable year-to-year, which can lower uncertainty

and facilitate adaptation.

Regarding the cessation of the rainy season (Figure B3), trends are more heterogeneous. While
Ethiopia, Niger and Nigeria exhibit a tendency towards later cessation dates, Malawi, Mali,
and Tanzania show the season ending earlier. Despite these varied patterns, the net effect on
the length of the rainy season (Figure B4) is a discernible decrease over time across most of the
study area, with the exception of Niger, where the season length remains roughly unchanged.
This reduction in the growing period is primarily driven by the consistent and significant delay
I observe in the season’s onset, reinforcing the importance of onset timing as the principal

determinant of changes in the effective length of the agricultural season.

4Testing for a time trend in the interquartile range of the onset residuals is conceptually equivalent to testing for
a form of heteroskedasticity where the error variance changes over time, e.g., o7 = f(t). This speaks to whether
the predictability of the onset is changing.
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5 Empirical strategy

To estimate the causal effect of rainy season onset timing on agricultural, economic, and nu-
tritional outcomes, I leverage temporal variation in onset dates within specific, fine-resolution
geographic locations. Identification relies on comparing outcomes within the same 0.1 x 0.1
degree grid cell across years, exploiting variations in onset timing relative to the cell’s long-run
average conditions and net of local trends. This approach matches survey units via their geo-
coordinates to grid cell ¢/, within climatic area a and country c, in year ¢. The analysis occurs at
both the plot and household level for the LSMS-ISA data, and at the woman-level for the DHS
data, as detailed in Section 3.

Given this identification strategy, the benchmark specification I estimate is:

Yie = bW + Xy + e + Ocar + €it (2)

Here, Y represents the outcome of interest for unit ¢ (a plot, household, or individual). Key
outcomes from the LSMS-ISA include agricultural productivity at the plot-level, household per
capita consumption at the household-level, and farmer adaptation strategies. From the DHS, I
examine women’s nutritional outcomes at the individual-level. The key independent variable,
W, is the calendar week of the rainy season onset. The coefficient of interest, (3, thus captures
the change in the outcome associated with a one-week delay. As context for the magnitude
of these year-to-year shocks, the pooled trend across all sampled cells reveals a significant
long-term delay in onset dates of approximately 18 days between 1979 and 2024 (see Section
4). Conditional on the model’s fixed effects, a one standard deviation shift in onset timing

corresponds to approximately two weeks.

Identification of the causal effect [ relies on the multi-way fixed effects structure, which iso-
lates plausibly exogenous short-run deviations in Wy,. The model includes two key sets of
fixed effects. First, i, represents high-resolution grid-cell fixed effects (0.1° x 0.1°). These
location fixed effects account for all time-invariant characteristics specific to location ¢, such
as its average climate, soil properties, and market access. However, detecting the potentially
subtle impact on nutritional outcomes is challenging, particularly with the more limited sample
of agricultural households in the DHS of approximately 59,000 woman-year observations. To
ensure the model retains sufficient statistical power for this specific analysis, the resolution for
these fixed effects is therefore coarsened to the 0.5° x 0.5° grid-cell level. Second, d.,; repre-
sents a full set of fixed effects for each unique combination of climatic area, country, and year.
These spatially specific time effects are crucial for identification for two primary reasons: they
flexibly control for any underlying secular trends in outcomes, and they absorb any unobserved
shocks common to a climatic region within a given country in a particular year. As detailed in

Appendix A.2, a grid cell / is considerably smaller than any climatic area within a country (Fig-
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ure Al), and each climatic area-by-country group contains a large number of unique grid cells
with sampled households (Table A3). This nested variation allows the model to distinguish

between broad, regional shocks and time-invariant local characteristics.

The vector X, incorporates available time-varying controls to account for remaining observ-
able differences. First, and most importantly for the conceptual framework outlined in Section
2, a comprehensive set of weather controls is included to separate the effect of onset timing
from aggregate seasonal weather. By accounting for total rainfall and temperature patterns,
these controls allow the model to estimate the net impact of a shift in seasonal timing, holding
aggregate conditions constant. The analysis then proceeds to test the hypothesis that adaptation
failures are a key driver of these net negative impacts. This distinction is crucial for policy.
As the subsequent analysis will show, a large portion of these damages stems from identifiable
adaptation failures—rather than inevitable biophysical consequences—which implies that these
losses can be mitigated with targeted interventions, such as improved weather forecasts. These
weather controls, measured at the grid-cell level over the calendar year, include: the number of
days with precipitation below the 25th and above the 75th percentiles of the historical distri-
bution, daily maximum relative humidity, average daily temperature, total annual precipitation,
and harmful degree days (days with maximum temperature exceeding the 90th percentile). Ap-
pendix B.3 presents estimates using these same controls aggregated over different temporal

windows.

Second, specific controls are also included depending on the level of analysis. For plot-level
outcomes, controls include household size, total farm area, and plot manager characteristics
(age, sex, marital status, education). For household-level outcomes, controls include indicators
for any household member’s education, non-farm enterprise ownership, number of plots, and
an urban indicator. For individual-level nutritional outcomes from the DHS, controls include
the woman’s years of education, her age and age squared, household head’s age, household

size, and an urban indicator.

Finally, €, represents the idiosyncratic error term. Because outcomes and the onset of the
rainy season exhibit spatial correlation, I cluster standard errors at a larger spatial unit: the
0.5° x 0.5° grid-cell level. All descriptive statistics and regression analyses use the survey
weights provided by LSMS-ISA and DHS. These weights are adjusted for the pooling of mul-
tiple survey waves per country to ensure representativeness. For plot-level analyses, household
weights are further rescaled by the number of plots per household. Appendix A.3 provides full
details.

The demanding fixed-effects structure may raise concerns about whether sufficient variation
remains for identification. For transparency, all regression tables report the number of observa-
tions used for identification and those dropped due to singleton groups. Furthermore, I provide

two pieces of evidence in Appendix B.2 to address these concerns directly. A variance de-
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composition (Figure B5) confirms that substantial within-location variation remains in the key
variables after accounting for fixed effects. A plot of the residualised onset of the rainy sea-
son (Figure B6) shows a symmetric, zero-centred distribution consistent with an idiosyncratic

shock, providing supportive evidence for the exogeneity assumption.

6 Results

This section presents the main empirical findings. I begin by showing that a delayed rainy sea-
son onset reduces agricultural productivity and, in turn, harms household welfare, as measured
by consumption and nutritional outcomes. I then investigate how farmers adapt to this shock,
focusing on adjusting their planting schedules to offset losses. Finally, I explore a key chal-
lenge to this strategy: how a false onset, a misleading signal that prompts early planting, can

lead to costly mistakes and worsen outcomes.

6.1 The impact of rainy season onset on agricultural productivity

The analysis begins by assessing the impact of rainy season onset timing on agricultural produc-
tivity. My findings indicate that a delayed start to the rainy season causally reduces agricultural

yields.

Table | presents the estimated impact of a one-week delay in the rainy season onset on agricul-
tural productivity, measured as the logarithm of yield in constant 2020 US dollars per hectare.
Across all specifications, a later onset is associated with a statistically significant reduction
in yields. In my preferred specification (Column 3), which includes a comprehensive set of
location fixed effects (0.1° x 0.1° grid cell), climatic area by country by year fixed effects,
weather controls, and plot-level demographic and farm characteristics, a one-week delay in the
rainy season onset causes an approximate 2% decrease in agricultural yields. This effect is

statistically significant at conventional levels.

The magnitude of this impact is economically important. To put this into perspective, a one
standard deviation delay in the onset of the rainy season—which corresponds to one and a half
weeks, conditional on the included fixed effects—leads to a reduction in agricultural productivity
of about 3%. This estimate is remarkably stable: the impact of a one-week delay is a consistent
2% reduction in yields across all specifications, irrespective of the inclusion of weather or plot-

level controls (Table 1, Columns 1-3).

To further explore the nature of this relationship, I check whether the impact of onset timing
is uniform or asymmetric. For this, I did not use the continuous onset week variable. Instead,
I binned each location-year’s onset timing based on its historical distribution within its 0.5° X

0.5° grid cell. Specifically, I created indicator variables for whether the onset fell into the
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bottom, middle, or top tercile. I then re-estimated equation (2) using indicator variables for the
earliest and latest terciles, with the middle tercile serving as the omitted category. The results,
presented in Figure 3, reveal a stark asymmetry. An onset occurring in the earliest third of
the historical distribution has an estimated effect on log yields of -0.3%, which is statistically
indistinguishable from zero when compared to an onset in the middle tercile. In contrast, an
onset occurring in the latest third of the historical distribution leads to a statistically significant
reduction in log yields by approximately 12%, compared to an onset in the middle tercile. This
confirms that the adverse productivity consequences are predominantly driven by significantly
later-than-usual rainy seasons. This finding holds when controlling for location-specific linear
trends (Figure B7), a check motivated by recent concerns in the literature about potential biases
in binned climate analyses (Jones et al., 2025). See Appendix B.2 for further details.

My benchmark empirical strategy, detailed in Section 5, imposes a stringent requirement on the
data by leveraging only within-cell variation in onset timing, net of controls and local trends.
Consequently, any remaining threat to identification would need to stem from an unobserved,
cell-level time-varying factor that is correlated with the year-to-year deviations in onset timing
and directly affects agricultural productivity through a channel other than the onset timing itself.
Such a specific confounder is arguably less likely given that the timing of the rainy season, and
its interannual variability, is substantially influenced by large-scale climatic patterns, such as
the El Nifio Southern Oscillation, the Indian Ocean Dipole, and Tropical Atlantic Variability,
which affect precipitation regimes and climate extremes across Sub-Saharan Africa (Zita et al.,
2025).

Nevertheless, I verify the robustness of this core finding through an extensive series of checks,
detailed in Appendix B.3. First, the negative and significant effect of onset timing remains sta-
ble even when employing different definitions of local trends by varying the geographic level
at which such trends are defined; this is noteworthy as altering the local trend specification
effectively changes the definition of the onset shock by modifying the variation used for iden-
tification (Table B3). Second, the impact is confirmed to be contemporaneous: a placebo test
using future onset (t+1) shows a coefficient close to zero and statistically insignificant, while
lagged onset (t-1) also has no significant effect on current yields, indicating the impact is not
persistent across years (Figure B8). Third, when examining other features of the rainy season, I
find that cessation timing or rainy season duration do not significantly affect productivity once
onset is controlled for, reinforcing the primary role of onset (Table B4). Fourth, the onset ef-
fect is not merely capturing other weather-related shocks, as it remains robust to the inclusion
of several weather controls defined at finer temporal frequencies (quarterly and monthly) that
capture variations in temperature, precipitation patterns including droughts and floods, and rel-
ative humidity (Table B5). Fifth, the finding is robust to various alternative transformations
of the yield variable (Table B6) and alternative measures of output (Table B7). Notably, the

magnitude of the yield reduction is larger when measured in kilograms per hectare than in US
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dollars, suggesting a potential local price increase in response to the negative supply shock.
The shock also affects the extensive margin, as a one standard deviation later onset increases
the probability of crop failure by approximately 5 percent. Lastly, statistical inference is robust,
holding under different clustering assumptions for standard errors (Table B8) and confirmed by

permutation-based inference (Figure B9).

6.2 Impact on household welfare: Consumption and nutrition

The reduction in agricultural productivity documented above has direct consequences for house-

hold welfare, with economic impacts that affect the broader local economy.

First, the shock to agricultural output translates into lower household spending. For agricul-
tural households, the group most directly affected, a later onset of the rainy season leads to
a statistically significant decrease in per capita consumption. As shown in Table 2, Columns
(1)—(3) indicate that a one-week delay reduces per capita consumption by approximately 1.0%
to 1.2%. To put this magnitude in perspective, a one standard deviation shift in onset timing

reduces consumption by aproximately 1.5%.

Importantly, these negative economic consequences are not confined to agricultural households.
As shown in Columns (4)-(6) of Table 2, the effect on per capita consumption remains statisti-
cally significant for the full sample. This indicates the presence of local spillover effects, as the
initial shock to agricultural income propagates to the non-farm economy. A primary channel
for this spillover is a contraction in local demand: as farmers’ incomes fall, they reduce their
spending on local goods and services, depressing economic activity for the entire community.
This is consistent with the finding in Table B 12 that a late onset is associated with a significant
reduction in wage employment opportunities. Beyond this direct spillover, a broader general
equilibrium effect could also be at play, operating through prices. A smaller harvest may in-
crease local food prices, which would reduce the real purchasing power of all households and

transmit the shock throughout the entire local economy.

Table 3 shows that a delay in the onset of the rainy season leads to a statistically significant dete-
rioration in the short-term nutritional status of women in agricultural households. Specifically, a
one-week delay is associated with a 0.007 standard deviation decrease in the weight-for-height
z-score. While this effect is statistically significant, its magnitude is modest. The standardised
effect indicates that for a one-standard-deviation delay in the onset, the z-score decreases by

approximately 2% of the sample mean.

Importantly, this nutritional decline is not severe enough to increase the likelihood of women
being classified as clinically wasted or underweight, as shown by the statistically insignificant
results in columns (2) and (3). The size of the impact on weight-for-height is consistent with

the analysis of productivity and consumption decreases. Table 3 shows that a delay in the onset
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of the rainy season leads to a statistically significant deterioration in the short-term nutritional

status of women in agricultural households.

This negative shock, however, does not appear to be transmitted to young children. Using the
anthropometric data for children, I find no statistically significant impact of a delayed onset
on weight-for-height z-scores or the probabilities of being wasted or considered underweight
(Table B15). This divergence—a nutritional cost for mothers but not for children—could reflect
incomplete risk sharing within households, where adults, particularly mothers, shield younger

members from shocks, potentially at their own expense (Dercon and Krishnan, 2000).

The main analysis employs location fixed effects at the 0.5°x0.5° grid-cell level to maintain
statistical power. Table B 16 re-estimates the model with the finer 0.1°x0.1° fixed effects used
in the agricultural analysis. In this more demanding specification, the point estimate remains
negative and similar in magnitude, but the larger standard errors render it statistically insignifi-

cant.

Furthermore, the negative nutritional impact of a late onset extends beyond agricultural house-
holds. When the sample is expanded to include all women, a delayed onset still causes a statis-
tically significant decrease in weight-for-height z-scores (Table B17), suggesting the presence

of general equilibrium spillovers that affect the wider community.

6.3 Farmer adaptation strategies in response to onset variation

Given these significant adverse impacts, I next analyse how farmers respond to year-to-year
variability in the start of the rainy season. I examine adjustments in key agricultural practices,
focusing on four primary margins: the timing of planting and other on-farm activities, the
intensity and type of input use, choices regarding crop types, and the allocation of household

labour to off-farm sectors.

The most direct way farmers can respond to a varying onset is by adjusting their planting
schedule. Table 4 (Column 1) shows that a later start of the rainy season leads to a delay
in farmers’ planting. Specifically, a one-week delay in the agronomically-defined onset week
causes an average delay in the approximated first planting day of the year by a statistically

significant 0.56 days.

The estimated responsiveness from the main text—an average planting delay of just half a day
for a full week of onset delay—is difficult to interpret directly. The coarse, monthly nature of
the planting data introduces two potential and opposing sources of measurement error, making

the direction of the net bias theoretically unclear.

The first and more intuitive source is attenuation bias. As shown in Figure B13, the median
planting month is remarkably stable over time, with a Pearson correlation of approximately 0.90

across survey waves. This stability, however, can mask significant daily-level adjustments.
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For the 90% of plots where planting is completed within a single calendar month, any shift
in planting dates that does not cross a month-end boundary (e.g., a 10-day delay from June
5th to June 15th) is recorded as a zero-day change. This systematically understates the true

responsiveness of farmers’ planting decisions.

Conversely, the data may also suffer from an opposing boundary-crossing bias that exaggerates
responsiveness. If a small, multi-day delay in the onset causes a farmer’s planting date to shift
from the end of one month to the beginning of the next (e.g., a 5-day delay from May 30th to
June 4th), the monthly approximation would record this as a 30-day shift. In such cases, the

regression would overstate the true sensitivity to the onset shock.

To resolve this ambiguity and estimate the net effect of these two opposing biases, I implement
a simulation exercise to recover the unbiased daily-level coefficient. The full methodology is
detailed in Appendix B.5, but in brief, I use the observed monthly planting data to fit location-
specific daily probability distributions, which I then use in an iterative search algorithm to
find the true daily coefficient that would produce my observed monthly coefficient. I conduct
this exercise using two different distributional assumptions: a parametric skew-normal and a

non-parametric kernel density estimation (KDE).

The simulation results confirm that while both biases exist, the attenuation from unobserved
within-month adjustments is the dominant effect. As shown in Figure B12, the corrected daily
coefficient is larger in magnitude than the original estimate. However, the magnitude of this
correction is modest. Using the KDE-based draws, the corrected coefficient is only 29% larger
than the biased estimate. This finding is significant. While the simulation corrects for a statis-
tical bias, the relatively small size of the correction implies that the true daily-level response of
farmers is itself limited. In other words, the measurement error is not masking a large underly-
ing behavioral response. This suggests that farmers are not adjusting their planting schedules
to the onset of the rains as flexibly as might be expected, pointing towards the presence of other

frictions or decision-making heuristics that Section 6.5 explores.

Beyond timing, a later onset week causes a statistically significant increase in seed quantity. As
shown in Table 4 (Column 4), the coefficient of 0.032 indicates that a one-week delay in onset
leads to an approximate 3.2% increase in seed quantity used per hectare. This could reflect
a strategy to ensure adequate plant density under potentially less favourable or more uncer-
tain early growing conditions. Alternatively, an increase in seed quantity might also indicate
re-planting efforts following early crop failure, a channel for which I will present suggestive
evidence when discussing the impacts of false onsets in Section 6.5. This increase in quan-
tity, however, does not translate into higher expenditure on seeds. Table B9 (Column 1) in
Appendix B.4 shows no significant change in seed value per hectare, suggesting that farmers
likely use more of the same type of seeds they customarily use, such as saved seeds or common

local varieties, rather than switching to more expensive, potentially improved, varieties as an
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immediate response to onset variation.

In contrast to these adjustments in planting timing and seed quantity, I find limited evidence
that onset timing causes short-run changes in other major input applications. Table 4 (Column
5) shows no statistically significant change in the probability of using fertiliser, with the small
coefficient indicating a negligible and insignificant effect on the likelihood of fertiliser appli-
cation. Further analysis in Table B9 (Columns 2 and 3) indicates no significant causal effect of
onset week on the quantity of inorganic fertiliser applied (kg/ha), nor on the value of inorganic
fertiliser (USD/ha), where the point estimate for value suggests a decrease but is not statistically
distinguishable from zero. Similarly, the probability of using pesticides (Table 4, Column 6)
does not respond significantly to onset timing. I also find no significant adjustments in on-farm
labour intensity. Table B9 (Columns 4 and 5) shows that onset week does not significantly
change either total family labour days per hectare or hired labour days per hectare; the point

estimate for hired labour days indicates a decrease, but this effect is not statistically significant.

When examining crop choice, I find no significant shifts in the main crop grown in response
to the onset week of a particular year. Table 4 (Columns 7-9) shows no statistically signifi-
cant change in the probability that the main crop on the plot is a cereal, a tuber, or a legume.
However, a more detailed analysis of which crops are present on a plot reveals a specific adjust-
ment margin. While a later onset does not affect the probability of a plot containing cereals or
legumes, it does lead to a small but statistically significant decrease in the probability of it con-
taining tubers (Table B 10). This aligns with the finding on the composition of plot value, where
a later onset also causes a minor decrease in the share of value attributed to tubers. Overall,
these findings suggest that while major decisions regarding crop portfolios are largely inflexible
in the face of year-to-year onset variability, farmers may make minor adjustments away from

certain crops like tubers when the season starts late.

Furthermore, I explored whether onset timing influences broader land use decisions at the
household level. As detailed in Table B11, I find no statistically significant impact of onset
week on extensive margin decisions such as the number of fallow plots or the number of plots
cultivated. Similarly, there is no significant effect on the overall scale of land operation, as mea-
sured by the logarithm of total cultivated area or the logarithm of total farm size. This suggests
that households do not significantly alter these decisions in immediate response to year-to-year

variations in onset timing.

Finally, I investigate whether households reallocate labour to off-farm sectors as an adaptive
response. Contrary to a simple story of labour substitution, the evidence suggests that a de-
layed onset reduces local wage-employment opportunities. Using individual-level data from
the LSMS-ISA, I find that a one-week delay in the onset of the rainy season causes a small but
statistically significant decrease in the probability of individuals engaging in any wage work.

Specifically, Panel A of Table B12 shows a 0.1 percentage point decrease for wage work over
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the past 12 months, representing a 2% reduction relative to the sample mean, and a 0.2 percent-
age point decrease for work in the past 7 days, a 3.7% reduction. Panel B provides evidence that
this finding holds for the general working-age population and is not driven by other members of
the household, as it remains significant when the sample is restricted to only household heads.
Furthermore, there is no significant effect on working specifically in agriculture or services, nor

on engagement in household business activities.

Taken together, these results suggest that rather than households readily shifting their labour to
off-farm work, opportunities for local wage employment diminish when the agricultural season
starts late, consistent with a negative shock to the local economy. An alternative explanation
involving an increase of on-farm labour demand seems unlikely, as direct measures of on-farm
labour days (both family and hired) do not show a significant increase; if anything, the point
estimates for hired labour days, while not statistically significant, suggest a decrease (Table
B9).

6.4 Heterogeneity of impacts: Vulnerability, resilience, and adaptation

While the average effect of a delayed onset on productivity is negative, the impact is not uni-
form. To identify the characteristics associated with vulnerability and resilience, I explore how
the effect varies across key farmer, household, and technological dimensions. The results, pre-

sented in Table 5, reveal a significant and economically meaningful degree of heterogeneity.

Socioeconomic and demographic factors play a role in shaping a household’s resilience. Col-
umn (1) shows that the negative impact of a delayed onset is exacerbated on plots managed by
women. The interaction term is negative and significant (-0.006), indicating that the yield loss
for female-managed plots is approximately a third larger than for male-managed plots in the
face of the same one-week delay. Conversely, human capital appears to be a key mitigating
factor. As shown in column (2), the interaction with a manager’s formal education is positive
and significant (0.006), implying that for educated managers, the yield penalty is reduced by
over a quarter. Economic resources provide a similar buffering effect. Column (3) shows that
households with above-median assets suffer a significantly smaller yield loss, suggesting that
wealthier households are better able to deploy capital to smooth the shock. Finally, the anal-
ysis highlights the critical role of technology. For irrigated plots, the positive and significant
interaction term (0.019) in Column (4) almost perfectly cancels out the baseline negative effect.
The use of improved seeds, shown in Column (5), also provides a statistically significant, albeit

smaller, mitigating effect.

A crucial question that arises from these findings is whether these more resilient groups achieve
better outcomes because they adapt their practices more effectively. I test this by examining if
they adjust their planting schedules more responsively to a delayed onset. The results, shown in

Table B2 1, suggest this is generally not the case. There is no statistically significant evidence
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that farmers with more education or more assets adjust their planting dates any differently
than their less-resourced counterparts. The findings for technology are more nuanced. For
irrigated plots, there is weak evidence that farmers delay planting less, perhaps because access
to water reduces the urgency of optimal timing. In contrast, farmers using improved seeds are
the only group to show a significantly more responsive adjustment, delaying their planting by

an additional 0.34 days for every week of onset delay.

Taken together, these findings paint a clear picture. While all rain-fed agriculture is exposed to
shifting seasonal timing, economic damages are disproportionately borne by marginalised pro-
ducers. Resilience is systematically linked to education, wealth, and access to adaptive tech-
nologies. However, the source of this resilience is not fully explained by a comprehensively
superior management response to the shock. For what is arguably the most critical margin—
planting time—the analysis reveals that most resilient farmers do not adapt their schedules
more effectively. The response on other input use is more nuanced. While wealthier and more
educated farmers show a statistically significant differential increase in the use of inputs like
pesticides, the magnitude of this adjustment is economically small (see Table B22). The most
meaningful adaptive response observed is in seed use, where more educated farmers signif-
icantly increase the quantity planted after a late onset. This selective and partial pattern of
adaptation—absent on the crucial timing margin, marginal for some inputs, and robust only
for seeds—suggests that the resilience of better-off farmers stems primarily from their greater
capacity to buffer shocks, rather than from consistently superior real-time management. This
implies that significant informational barriers to optimal adaptation remain, leaving room for

improvement across the board.

6.5 Limits to adaptation: False onsets and farmer awareness

While strategically delaying planting can significantly mitigate productivity losses—a finding
supported by an instrumental variable analysis presented in Appendix B.6—the fact that not all
farmers perfectly adjust their timing suggests that adaptation is not free of risk. In the sample,
farmers appear to plant too early, and therefore miss the agronomically correct window, on ap-
proximately one-third of all plots. Specifically, 34% of plots are planted before the modelled
onset date—recall that this is the earliest point at which soil moisture is sufficient to reliably
sustain a crop. Planting before this window opens is a high-risk strategy, as it exposes seeds to
early-season dry spells that can lead to crop failure. While one might hypothesize that this early
planting is driven by off-farm labour commitments, this is unlikely to be the primary explana-
tion, as only 3% of working-age individuals in the sample report having any wage employment.
A more plausible explanation is that farmers’ decisions are constrained by misleading weather
signals and imperfect awareness of onset delays. In this section, I provide suggestive evidence

for both of these channels.
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A primary source of confusing signals for farmers is a false onset of the rains. I develop a
precise, data-driven definition to capture this specific weather pattern. The process first defines
a relevant search window for each location, symmetrically set at 60 days around its long-term
average onset date. This local baseline is calculated as the mean onset for each 0.5° x 0.5° grid
cell using annual data since 2000. This window helps to avoid identifying spurious weather
events far outside the planting season. Within this plausible window, a false onset is identified
by a two-part sequence. First, there must be a wet spell that could plausibly trigger planting:
two consecutive days with at least 20mm of cumulative rainfall (Marteau et al., 2011). Second,
to be considered false, this must be followed by a damaging dry spell: seven consecutive days
with less than 0.Imm of rain each, which must begin within 20 days of the wet spell. For a
location-year to be classified as a false onset, this entire wet-then-dry sequence must conclude
21 days before the date of the true agronomical onset, to avoid any overlap. This is a relatively
rare event, affecting 4.5% of plot-years in the sample, and on average, it occurs 26 days before
the true onset. To test its impact, I extend my benchmark regression to include a dummy
variable for whether a false onset occurred and its interaction with the onset week, using a fully

flexible specification where all fixed effects are also interacted with the false onset indicator.

A false onset should only harm productivity if it tricks farmers into planting at the wrong time.
The results in Table 6 show this is precisely what happens. Column (1) reveals that when a
false onset occurs, farmers react by planting significantly earlier than they otherwise would.
The interaction term shows that for each week the true onset is delayed, the presence of a
false signal causes planting to occur approximately one day earlier. The consequences of this
mistake are evident in Column (2). For each week of onset delay, a false onset is associated
with an additional 10% increase in seed quantity, a substantial rise that strongly suggests a
narrative of initial crop failure followed by costly replanting. Ultimately, this disruption has a
dramatic impact on productivity. As shown in Column (3), the negative effect of a one-week
delay in the rainy season is amplified more than three-fold when it is preceded by a false onset,
with the total yield loss increasing from 2.3% to 8.9%. While the evidence on planting dates
and seed quantities points to timing errors as the primary damage channel, other agronomic or
economic pathways could also be at play. I explicitly test for these alternatives in Table B19.
The results show no significant change in pesticide use, casting doubt on the hypothesis that
false onsets primarily harm yields by increasing pest prevalence. Similarly, I find no effect on
the use of hired labour, ruling out a labour market response as an alternative damage channel.
The only significant effect is a sharp decrease in fertilizer use. This finding reinforces the main
hypothesis: after a false onset induces a planting error and subsequent crop failure, farmers

reduce their investment on the compromised plot.

This core finding is robust to the specific parameters of the false onset definition. As shown in
Appendix Table B 18, the results are qualitatively unchanged when using alternative definitions.

For instance, I test for a wider search window (70 days) and require a longer, more damaging
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dry spell (10 days) to ensure the signal is truly relevant. In these alternative specifications, a
false onset continues to significantly worsen the impact of a delayed season on yields, with the

total negative effect remaining large and statistically significant.

Beyond being misled by false onsets, a second informational barrier appears to be the low
salience of the underlying shock itself. To explore whether farmers perceive and report the
negative shock from a delayed rainy season onset—a potential barrier to adaptation—I use
self-reported, plot-level data from the LSMS-ISA surveys asking if a plot experienced a neg-
ative shock. I examine two binary outcomes: suffering (1) any crop shock, and (2) a drought
shock specifically. I estimate equation (2), also replacing the continuous onset variable with
indicators for the top and bottom terciles of the historical distribution to test for non-linearities
in perception. The results, presented in Table 7, indicate that farmers’ awareness is indeed
non-linear. A typical delay in the rainy season does not significantly increase the probability
that a farmer reports a negative shock, suggesting the effect may be difficult to distinguish from
normal year-to-year variation. Awareness is triggered only by extreme events; farmers are sig-
nificantly more likely to report a shock only when the onset is exceptionally late (in the top
tercile). Even then, they tend to misattribute the shock primarily to drought rather than the shift
in timing. These patterns of non-linear awareness and misattribution hold when controlling for
location-specific linear trends. This robustness check, detailed in Appendix B.2 (Table B2),
addresses potential biases from unobserved local trends highlighted by Jones et al. (2025). To-
gether, these informational frictions—a vulnerability to misleading signals (false onsets) and a
low awareness or misattribution of moderate shocks—help explain why even rational farmers
may struggle to adapt their planting schedules effectively, leaving them exposed to the risks of

a shifting season.

6.6 Projecting future damages

A key question is whether the estimated short-run effects of weather shocks can inform our
understanding of the long-term consequences of climate change. A common approach to testing
for long-run adaptation is to compare locations with different initial climatic conditions; for
instance, locations with higher average temperatures might be better adapted to a heatwave
(Dell et al., 2014). For the timing of the rainy season, however, the absolute day of the year
is less important than its deviation from local expectations. I therefore adapt this approach to
compare locations based on their long-term trends in onset timing. If farmers adapt to persistent
environmental change, one might expect those in locations where the onset is secularly arriving

later to be more resilient to a late-onset shock than farmers in areas with a more stable climate.

To test this, I classify locations as either trending or non-trending based on the long-run linear
trend in onset timing over the last four decades, estimated at the 0.5°%0.5° grid-cell level.

A location is defined as trending if it exhibits a statistically significant positive trend. I then
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expand equation (2) by interacting the onset week of the rainy season with an indicator for

being in a trending location.

The results, presented in Table 8, provide strong evidence of a failure to adapt. The negative
impact of a delayed onset on agricultural yields is driven entirely by locations already expe-
riencing a long-term climate trend toward later rainy seasons. In non-trending locations, a
later-than-usual onset has no statistically significant effect on productivity. In stark contrast, in
trending locations, a one-week delay causes a significant yield loss. These vulnerable, trend-
ing locations constitute the vast majority of the sample, representing approximately 90% of

plot-wave observations.

This lack of long-run adaptation is further corroborated by a failure to learn even from recent,
year-to-year experience. If farmers were updating their strategies based on past weather, a
delayed onset in the previous year ({ — 1) should lead them to adjust their behavior in the
current year (t). I test for this inter-annual learning across all major adaptation margins and
find no evidence of a systematic response. As shown in Table B 13, the previous year’s onset

has no statistically significant effect on planting dates, input use, or harvest timing.

Taken together, these two pieces of evidence suggest a persistent failure to adapt, which pro-
vides the justification for using short-run estimates to project future damages. To quantify this
threat, I project the Net Present Value (NPV) of damages from 2025 to 2050, presented as a per-
centage of 2024 real GDP. The calculation combines my benchmark estimate of a 2% yield loss
per week with country-specific climate shocks. These shocks are scenario-dependent: under
the Business as Usual scenario, I use the full projected onset delay from Figure B1, while the
Toward Sustainability scenario assumes a 50% less severe delay, reflecting climate mitigation
efforts. The annual loss is calculated in absolute monetary terms by combining these shocks
with FAO scenarios for future real agricultural shares and real GDP growth. The model also ac-
counts for a data-driven expansion of irrigated land, which is forecast based on historical trends
(see Figure C1); however, these projections suggest that only Ethiopia, Mali, and Tanzania will
see meaningful increases in irrigation by 2050. Finally, I use a time-varying discount rate from
the DICE-2023 model. The full methodology is detailed in Appendix C.

Figure 4 presents the main finding. Cumulative damages will be high under either climate
path, but a more sustainable trajectory can offset a sizeable portion of the economic losses.
Under the Business as Usual scenario (solid red line), cumulative discounted damages by 2050
are substantial, reaching approximately 10% of 2024 GDP in Ethiopia and Mali. The shaded
area quantifies the Sustainability Benefit of a less severe climate shock combined with a more
resilient economy, averting over $4.3 billion in damages for Ethiopia and $20.2 billion for

Nigeria.

Of course, this projection is pessimistic as it does not allow for long-run adaptation beyond

the expansion of irrigation. Figure 5 addresses this by comparing the baseline Business as
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Usual damages with an optimistic counterfactual where farmers adapt successfully, causing the
impact of onset delays to decrease linearly to zero by 2050. While this Adaptation Benefit is
significant, the remaining costs are still substantial.

While the model already builds in a key adaptation technology, irrigation, its projected effect
is limited. A comparison of damages with and without future irrigation expansion (see Figure
(C2) shows that the benefits are modest for most countries. This is driven by the low expected

growth in the share of irrigated cropland under current trends.

Finally, it is crucial to acknowledge the large uncertainty surrounding these estimates. The
projections for GDP, agricultural shares, climate shocks, and adaptation capacity are all subject
to uncertainty. While it is not possible to model this fully, Figure C3 and Table C1 present
the Business as Usual projections using the 95% confidence interval of the benchmark yield
loss coefficient. They reveal that even under the most optimistic lower-bound estimate, the

cumulative economic damages remain large and economically significant for all countries.

7 Conclusion

This paper investigates the consequences of shifting seasonal timing for agricultural communi-
ties in Sub-Saharan Africa. Using decades of high-resolution climate data, I document a clear
trend: the onset of the rainy season is occurring progressively later across six major African
countries, leading to shorter growing seasons. The analysis shows that these delays have sig-
nificant negative consequences. A one-week delay in the onset causally reduces agricultural
yields by approximately 2%. These damages are not evenly distributed; they are borne dispro-
portionately by the most vulnerable, particularly on plots managed by women, while education,
wealth, and technology build resilience. In response, farmers adapt primarily along low-cost
margins—delaying planting and increasing seed quantities—but these adjustments are insuffi-
cient to prevent losses to productivity and welfare. Projecting these damages forward reveals a
substantial long-term economic threat, with cumulative discounted losses potentially reaching
10% of current GDP by 2050 for the most affected nations.

A central puzzle emerging from the analysis is why farmers do not fully leverage planting date
adjustments, a strategy this paper shows is both powerful and inexpensive. The evidence points
strongly toward informational constraints as the primary barrier. This conclusion is reinforced
by the finding that even farmers who are more resilient to the initial shock do not systematically
adapt their planting timing more effectively. The problem is not merely a lack of resources but a
pervasive informational challenge, epitomized by the false onset. This paper demonstrates that
these misleading early rains trick farmers into planting prematurely, a mistake that ultimately

more than doubles the negative impact of a late onset of the rainy season.

The scale of these projected damages lends urgency to several clear policy implications. First,
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the demonstrated vulnerability of farmers to false onsets highlights a high potential return for
investments in accessible and reliable short-range weather forecasts. Such services could create
enormous value not by replacing farmer knowledge, but by helping to differentiate a true onset
from a false one. Second, the heterogeneity of the impacts underscores that interventions must
be targeted. Policy should not only deliver weather information but also work to reduce the
underlying vulnerabilities that amplify damages, for instance by improving women’s access to
resources and promoting education. Third, the limited adaptation along the crop choice margin
suggests a need for continued investment in agricultural R&D to develop and disseminate seed
varieties with more flexible growing periods. Finally, the evidence of negative spillovers to the
entire local economy points to a need for social protection systems that are responsive enough

to respond to shocks in seasonal timing, not just catastrophic events like major droughts.

The findings in this paper point to several promising avenues for future research. Building on
this analysis, future work using true panel data could offer deeper insights into the dynamic,
household-level adaptation strategies that unfold over multiple seasons. Further research could
also explore a broader set of adaptation margins not explicitly covered here, including migra-
tion, the role of social networks, and investments in irrigation. Finally, linking these climate
shocks to local market data would be a valuable extension, illuminating how market access
and price signals mediate both the damages and the capacity for adaptation, providing a richer

understanding of this critical climate vulnerability.
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Note. Two primary channels through which the timing of the onset of the rainy season affects economic outcomes. The Biophysical channel
represents the direct impact of weather conditions (e.g., temperature, moisture) on crop growth and productivity, independent of farmer actions.
The Adaptation channel represents how farmers’ responses to weather signals affect productivity. The empirical strategy first estimates the
net impact of onset timing (controlling for the biophysical channel) and then uses subsequent analysis to identify the adaptation channel as the
key mechanism, as detailed in Section 5.

A

Figure 1: Channels of impact from shifting seasonal timing
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Figure 2: Country-specific trends in rainy season onset
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Ethiopia 19.8
Malawi 17.8
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Note. Each panel in the figure displays the annual mean onset day of the year for 0.1° x 0.1° grid-cells matched to LSMS-ISA survey
locations within the respective country from 1979-2024. The dashed red line represents the fitted linear trend, estimated using country-
specific fixed-effects models (see equation 1). The table reports the total change in days over the full sample period as implied by the model.
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Figure 3: Onset of the rainy season — asymmetric effects
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Note. The figure displays OLS regression coefficients for indicator variables representing the bottom tercile and top tercile of the historical
rainy season onset distribution within 0.5° x 0.5° grid cells. The middle tercile is the omitted reference category. The dependent variable is
log agricultural yields (2020 USD per hectare). The regression includes the benchmark set of fixed effects (0.1° x 0.1° grid cell and climatic
area by country by year), weather controls, and plot-level controls as specified in Equation 2. Bars represent 95% confidence intervals based
on standard errors clustered at the 0.5° x 0.5° grid-cell level.

Figure 4: Projected damages by 2050
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Note. Cumulative discounted damages from 2025 to 2050, expressed as a percentage of 2024 real GDP. Damages are calculated using the
benchmark estimate of a 2% yield loss per week of onset delay. The solid line shows damages under the FAO’s Business as Usual economic
scenario and the full projected onset delay. The dashed line shows damages under the Toward Sustainability scenario, which assumes a 50%
less severe onset delay. The shaded area represents the economic benefit of the sustainable path. All projections account for the mitigating

effect of future irrigation expansion and use a time-varying discount rate from the DICE-2023 model. See Appendix C for full details.
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Figure 5: Accounting for future adaptation
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Note. Cumulative discounted damages from 2025 to 2050 under the Business as Usual scenario with an optimistic counterfactual, expressed
as a percentage of 2024 real GDP. The solid line (No adaptation) shows the baseline projection using a constant 2% yield loss per week of
onset delay. The dashed line (Decreasing effect) shows a scenario where this yield impact linearly declines to zero between 2025 and 2050.
The shaded area represents the total economic benefit of this optimistic, catch-all adaptation scenario, quantified in millions of US dollars.

Table 1: Onset of the rainy season and agricultural productivity

Dependent variable: Log yields (2020 USD per hectare)
(1) 2 (3)

Onset of the rainy season -0.022 -0.021 -0.021

(0.007) (0.008) (0.007)

[0.002] [0.005] [0.002]
Standardised effect -0.036 -0.033 -0.033
Mean (dep. var.) 5.744 5.744 5.744
Identifying observations 130,556 130,556 129,919
Singleton observations 182 182 180
Countries 6 6 6
Planting year range 2008-2022 2008-2022 2008-2022
Weather controls No Yes Yes
Demographic controls No No Yes

Note. OLS regression estimates of Equation 2. The dependent variable is the log of yield, measured in 2020 US dollars per hectare. Onset
of the rainy season is the week of the year when conditions specified in Section 3 are met. All specifications include 0.1° x 0.1° grid-cell
fixed effects and climatic area by country by year fixed effects. A full list of controls is presented in Section 3. Standard errors clustered at
the 0.5° x 0.5° grid-cell level are reported in parentheses. p-values are reported in brackets. Appendix A.l provides detailed information on

variables, selected surveys, and weighting procedures.
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Table 2: Onset of the rainy season and per capita consumption

Dependent variable:

Log per capita consumption

Agricultural households All households
) @) (3) “ ) (6)

Onset of the rainy season -0.012 -0.010 -0.010 -0.008 -0.007 -0.007

(0.004) (0.005) (0.005) (0.002) (0.003) (0.003)

[0.006] [0.041] [0.047] [0.001] [0.006] [0.010]
Standardised effect -0.020 -0.016 -0.015 -0.016 -0.014 -0.013
Mean (dep. var.) 5.970 5.970 5.970 6.227 6.227 6.225
Identifying observations 29,335 29,335 29,269 70,748 70,748 70,298
Singleton observations 338 338 337 457 457 457
Countries 6 6 6 6 6 6
Survey year range 2008-2022 2008-2022 2008-2022 2008-2022 2008-2022 2008-2022
Weather controls No Yes Yes No Yes Yes
Demographic controls No No Yes No No Yes

Note. OLS regression estimates of Equation 2. The dependent variable is the log of per capita consumption, measured in 2020 US dollars.
Onset of the rainy season is the week of the year when conditions specified in Section 3 are met. All specifications include 0.1° x 0.1° grid-cell
fixed effects and climatic area by country by year fixed effects. All specifications also include weather and plot-level controls; a full list of
these controls is presented in Section 3. Standard errors clustered at the 0.5° x 0.5° grid-cell level are reported in parentheses. p-values are
reported in brackets. In Columns (1)—-(3), the sample is restricted to households engaged in the agricultural sector and reporting a complete

harvest. Appendix A.l provides detailed information on variables, selected surveys, and weighting procedures.

Table 3: Onset of the rainy season and women’s nutrition

Dependent variable: Weight-for-height Wasted Underweight
(1) (2) (3)
Onset of the rainy season -0.007 0.001 0.001
(0.004) (0.001) (0.001)
[0.040] [0.261] [0.378]
Standardised effect -0.016 0.001 0.001
Mean (dep. var.) -0.850 0.110 0.142
Identifying observations 59,014 59,014 51,733
Singleton observations 16 16 15
Countries 6 6 6
Interview year range 1995-2018 1995-2018 1992-2022

Note. OLS regression estimates of Equation 2. The data are from the DHS (Croft et al., 2018) for women in agricultural households. The
dependent variables are defined as follows. Weight-for-height is a z-score, representing the standard deviation from the median of the DHS
reference population. Wasted is an indicator for a weight-for-height z-score below -2. Underweight is an indicator for a BMI below 18.5.
Onset of the rainy season is the week of the year when conditions specified in Section 3 are met. All specifications include weather controls,
individual-level controls, climatic area by country by year fixed effects, and location fixed effects at the 0.5° x 0.5° grid-cell level. Standard

errors, clustered at the 0.5° x 0.5° grid-cell level, are in parentheses. p-values are in brackets. Appendix A.l provides further details.
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Table 4: Onset of the rainy season and crop management

Timing Inputs Main crop is
Dependent variable: Planting Planting Harvest Seeds Fertiliser Pesticide Cereals Tubers Legumes
(DOY) duration (DOY)
) @) 3 “ ® (O] O] ® ®
Onset of the rainy season 0.557 -0.008 0.620 0.032 -0.001 -0.000 0.000 -0.001 0.000
(0.222) (0.003) (0.942) 0.011) (0.002) (0.002) (0.002) (0.001) (0.001)
[0.012] [0.016] [0.510] [0.006] [0.664] [0.771] [0.817] [0.410] [0.910]
Standardised effect 0.842 -0.012 0.936 0.046 -0.001 -0.001 0.001 -0.001 0.000
Mean (dep. var.) 188.934 1.105 250.370 3.453 0.516 0.066 0.572 0.069 0.122
Identifying observations 125,609 125,609 106,970 120,669 135,081 135,306 136,855 136,855 136,855
Singleton observations 74 74 117 197 173 173 175 175 175
Countries 5 5 5 6 6 6 6 6 6
2009-2022 2009-2022 2009-2022 2009-2022 2008-2022 2008-2022 2008-2022 2008-2022 2008-2022

Planting year range

Note. OLS regression estimates of Equation 2. The dependent variables are defined as follows. Planting (DOY) is the approximated first planting day of the year; this approximation assumes planting occurred on the
15th of the reported month. Planting duration is the number of distinct months planting occurred on the plot. Harvest (DOY) is the approximated first harvest day of the year, assuming harvest occurred on the 15th of
the reported month. Seed is the log of seed quantity used on the plot, measured in kilograms per hectare. Fertiliser is an indicator variable taking the value 1 if any fertiliser, whether organic or inorganic, was used, and
0 otherwise. Pesticide is an indicator variable that equals 1 if any pesticide was used and 0 otherwise. Cereals, Tubers, and Legumes are indicator variables taking the value 1 if the main crop by production value on the
plot belongs to the respective category, and 0 otherwise. Onset of the rainy season is the week of the year when conditions specified in Section 3 are met. All specifications include 0.1° x 0.1° grid-cell fixed effects and
climatic area by country by year fixed effects. All specifications also include weather and plot-level controls; a full list of these controls is presented in Section 3. Standard errors, which are clustered at the 0.5° x 0.5°

grid-cell level, are reported in parentheses. p-values are reported in brackets. Appendix A.1 provides further details on variable construction, selected surveys, and weighting procedures.



Table 5: Heterogeneous effects on agricultural productivity

Dependent variable: Log yields (2020 USD per hectare)

) ) (3) G ®)
Onset of the rainy season -0.020 -0.024 -0.022 -0.021 -0.018
(0.007) (0.007) (0.006) (0.007) (0.010)
[0.003] [0.000] [0.001] [0.002] [0.082]
X Manager is female -0.006
(0.001)
[0.000]
X Manager has formal education 0.006
(0.002)
[0.001]
x Above median assets 0.007
(0.002)
[0.000]
x Irrigated plot 0.019
(0.007)
[0.010]
x Improved seeds 0.005
(0.002)
[0.034]
Mean (dep. var.) 5.744 5.744 5.743 5.749 5.705
Identifying observations 129,919 129,919 129,886 128,486 105,671
Singleton observations 180 180 180 177 215
Countries 6 6 6 6 6
Planting year range 2008-2022 2008-2022 2008-2022 2008-2022 2011-2022

Note. OLS regression estimates of Equation 2. The dependent variable is the log of yield, measured in 2020 US dollars per hectare. Onset of
the rainy season is the week of the year when conditions specified in Section 3 are met. All specifications include 0.1° x 0.1° grid-cell fixed
effects and climatic area by country by year fixed effects. All specifications also include weather and plot-level controls; a full list of these
controls is presented in Section 3. Standard errors clustered at the 0.5° x 0.5° grid-cell level are reported in parentheses. p-values are reported
in brackets. Appendix A.l provides detailed information on variables, selected surveys, and weighting procedures.

Table 6: The role of false onsets

Dependent variable: Planting (DOY) Seeds Log yields (2020 USD per
hectare)
(1 (2) (3)
Onset of the rainy season 0.446 0.033 -0.024
(0.226) (0.012) (0.007)
[0.049] [0.009] [0.001]
X False onset -0.982 0.099 -0.062
(0.422) (0.029) (0.031)
[0.020] [0.001] [0.043]
Mean (dep. var.) 188.916 3.453 5.744
Identifying observations 125,588 120,650 129,899
Singleton observations 95 216 200
Countries 5 6 6
Planting year range 2009-2022 2009-2022 2008-2022

Note. OLS regression estimates based on Equation (2). Planting (DOY) is the approximated first planting day of the year; this approximation

assumes planting occurred on the 15th of the reported month. Seeds is the log of seed quantity used on the plot, measured in kilograms per

hectare. Log yields (2020 USD per hectare) is the log of yields, measured in 2020 US dollars per hectare. Onset of the rainy season is the

week of the year when conditions specified in Section 3 are met. The analysis examines the interaction between the rainy season onset week

and a dummy variable indicating a False onset. Benchmark fixed effects are interacted with the false onset dummy. All specifications include

a full set of weather and plot-level controls. Standard errors, clustered at the 0.5° x 0.5° grid-cell level, are in parentheses. p-values are in

brackets. Appendix A.1 provides further details.



Table 7: Farmers’ awareness

Dependent variable: Crops shock Drought shock
(1) (2) (3) 4)
Onset of the rainy season 0.003 0.001
(0.002) (0.003)
[0.301] [0.821]
Earliest onset tercile -0.005 0.006
(0.017) (0.016)
[0.769] [0.709]
Latest onset tercile 0.031 0.034
(0.012) (0.013)
[0.007] [0.008]
Standardised effect 0.004 0.001
Mean (dep. var.) 0411 0411 0.202 0.202
Identifying observations 136,420 136,420 132,044 132,044
Singleton observations 173 173 180 180
Countries 6 6 6 6
Planting year range 2008-2022 2008-2022 2008-2022 2008-2022

Note. OLS regression estimates of Equation 2. The dependent variable in each column is a binary indicator for whether a farmer reported a
negative shock on a given plot. Onset of the rainy season is the week of the year when conditions specified in Section 3 are met. Earliest onset
tercile and Latest onset tercile are indicators for whether the onset of the rainy season for a location falls into the earliest or latest tercile of its
historical distribution, with the middle tercile serving as the omitted category. These terciles are defined separately for each 0.5° x 0.5° grid
cell based on its long-term (1979-2020) onset history. For comparison, Panel A presents results using the continuous onset week variable. All
specifications include 0.1° x 0.1° grid-cell fixed effects, climatic area by country by year fixed effects, and a full set of weather and plot-level
controls. Standard errors, clustered at the 0.5° x 0.5° grid-cell level, are in parentheses. p-values are in brackets. Appendix A.l provides

detailed information on all variables.

Table 8: Heterogeneity of onset impacts by long-run climate trend

Dependent variable: Log yields (2020 USD per hectare)
) &) (3
Onset of the rainy season 0.005 0.004 -0.000
(0.009) (0.009) (0.008)
[0.595] [0.656] [0.981]
X Positive and significant trend -0.033 -0.032 -0.026
0.011) (0.012) 0.011)
[0.003] [0.009] [0.017]
Mean (dep. var.) 5.744 5.744 5.744
Identifying observations 130,556 130,556 129,919
Singleton observations 182 182 180
Countries 6 6 6
Planting year range 2008-2022 2008-2022 2008-2022
Weather controls No Yes Yes
Demographic controls No No Yes

Note. OLS regression estimates of Equation 2. The dependent variable is the log of yield, measured in 2020 US dollars per hectare. Onset of
the rainy season is the week of the year when conditions specified in Section 3 are met. A location is designated as trending if its 0.5° x 0.5°
grid cell has a statistically significant positive long-run trend in onset. All specifications include 0.1° x 0.1° grid-cell fixed effects and climatic
area by country by year fixed effects. A full list of controls is presented in Section 3. Standard errors clustered at the 0.5° x 0.5° grid-cell level
are reported in parentheses. p-values are reported in brackets. Appendix A.l provides detailed information on variables, selected surveys, and

weighting procedures.
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A Data and methodological procedures

A.1 Variables and data sources

Variable

Description

Agricultural productivity

Climatic areas

Crop types and main crop

False onset

Inputs

Irrigated

Labour outcomes

Nutrition

Per capita consumption

Plot area

Rainy season calendar

Two primary measures of agricultural yields are used: output in constant 2020 US dollars per hectare and
output in kilograms per hectare. These are calculated at the plot level.

Household GPS coordinates from the LSMS-ISA surveys are spatially matched to define unique climatic
areas based on the Koppen-Geiger climate classification (Metzger et al., 2023). Due to the requirements of
fixed effect estimation needing sufficient observations within each group, these detailed classifications are
aggregated into three broader zones: Tropical, Temperate, and Arid.

Standardised crop groupings are utilised as defined in the LSMS-ISA harmonised dataset (World Bank,
2024). There are ten categories created to ensure comparability across countries: barley, wheat, rice,
sorghum, maize, millet, perennials (e.g., fruit and tree crops), legumes, root crops, and nut. Crops that do
not fall into any of these categories are classified as others. The main crop on a given plot is identified as
the crop within these categories that has the highest production value, following the methodology of World
Bank (2024).

An area is considered exposed to a false onset if, within a 30-day window around its usual onset date (see
Usual rainy season dates), it experiences a 2-day wet spell with at least 20mm of rainfall, which is then
followed by a 7-day dry spell (where a day counts as dry if it receives less than 0.1 mm of rain) within the
subsequent 20 days.

Plot-level information is collected on the use of various agricultural inputs. Seeds refers to the quantity
of seeds used, measured in kilograms per hectare for a given plot. Seed value is the total value of seeds
used per hectare on a plot, expressed in constant 2020 US dollars (see Unit values). Improved seeds is an
indicator variable taking the value 1 if the seeds planted are not traditional varieties (i.e., are improved or
high-yielding), and 0 otherwise. Fertiliser is an indicator variable that equals 1 if either organic or inorganic
fertilisers were used on the plot, and O otherwise. Similarly, Pesticides is an indicator variable taking the
value 1 if pesticides were applied to the plot, and O otherwise.

An indicator variable at the plot level that takes the value 1 if any form of irrigation was used on the plot
during the agricultural season, and O otherwise.

Individual-level data from LSMS-ISA are used to construct indicator variables for individuals of work-
ing age regarding their employment activities. Any wage work (Last 12 months) indicates if an individual
reports working for a wage in the past twelve months. Agriculture (Last 12 months) indicates if an individ-
ual reports wage work specifically in the agricultural sector in the past twelve months. Services (Last 12
months) indicates if an individual reports wage work in the service sector in the past twelve months. For
a shorter recall period, Any wage work (Last 7 days) indicates if an individual reports working for a wage
in the past seven days. Household business (Last 7 days) indicates if they report working for a household
business in the past seven days. Each of these is an indicator variable taking the value 1 if the condition is
met, and O otherwise.

The DHS records objective measurements performed by its data collection team, utilizing the CDC Stan-
dard Deviation-derived Growth Reference Curves for standardized distributions (Croft et al., 2018). The
indicators used are as follows: w/h (weight-for-height) represents the z-score from the reference curve, with
wasted being an indicator variable equal to 1 if the w/h z-score is less than -2, and O otherwise. Similarly,
h/a (height-for-age) is the z-score from the reference curve, where stunted is an indicator variable equal to
1 if the h/a z-score is less than -2, and 0 otherwise. BMI is defined as the ratio of weight in kilograms to the
square of height in meters, excluding pregnant women. Finally, Underweight is an indicator variable set to
1 if a woman’s BMI is below 18.5.

Household consumption is aggregated per capita and expressed in constant 2020 US dollars. This aggregate
generally excludes expenditure on rent and durables. It is important to note that Tanzania Wave 5, which
includes durables, is excluded from the main analyses as detailed in Section 3. Furthermore, comparable
consumption aggregates are not available for Malawi Waves 3 and 4, and Mali Wave 2.

The area of each agricultural plot is measured in hectares. This information is primarily sourced from GPS
device measurements as provided in the LSMS-ISA harmonised dataset (World Bank, 2024). In instances
where GPS measures are unavailable, imputation methods based on self-reports and administrative data are
employed, as detailed by World Bank (2024).

Variables summarising the rainy season calendar are computed for each 0.1° x 0.1° grid cell and year
using the AquaBEHER R package (Takele and Dell’ Acqua, 2023). This package employs an agronomic
definition based on soil water balance. The package requires the user to specify an earliest possible onset
date, a latest possible onset date, and a latest possible cessation date for each location. These are determined
flexibly: the earliest onset is set 90 days before the location’s usual onset date, the latest onset is 90 days
after the usual onset date, and the latest cessation is 90 days after the usual cessation date (see Usual rainy
season dates). The Onset is then defined as the first day when the actual-to-potential evapotranspiration
ratio is greater than 0.5 for seven consecutive days, followed by a 20-day period in which plant-available
water remains above the wilting point over the root zone of the soil layer. The Cessation is the first day
when the actual-to-potential evapotranspiration ratio falls below 0.5 for seven consecutive days, followed
by 12 consecutive non-growing days during which plant-available water remains below the wilting point
over the root zone. The Length of the rainy season is the total number of days from the onset to the cessation
of the season.

(continued on next page)
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Variable Description

Unit values To enable cross-country analysis, key agricultural input and output variables are valued in constant 2020
US dollars, following the methodology of the LSMS-ISA harmonised dataset (World Bank, 2024). This
involves calculating median prices for specific categories of inputs and outputs at the enumeration area (EA)
level. If fewer than 10 price observations exist at the EA level, medians are calculated using progressively
larger administrative units up to the national level. These derived prices are then multiplied by standardised
quantities. The resulting local currency unit values are converted to 2020 US dollars using annual exchange
rates and CPI data from the World Bank Open Data Initiative.

Usual rainy season dates The usual onset and cessation dates of the rainy season for each 0.1° x 0.1° grid cell are determined
following the methodology of Dunning et al. (2016). This method first computes the climatological mean
rainfall for each day of the calendar year and the overall climatological daily mean rainfall for the location.
From these, the climatological cumulative daily rainfall anomaly is calculated for each day of the year. The
day of the minimum in this cumulative anomaly series marks the beginning of the climatological water
season (usual onset), and the day of the maximum in the series marks its end (usual cessation). These usual
dates provide the baseline for defining the search window in the AquaBEHER package (see Rainy season
calendar).

Weather controls Daily climate variables are sourced from the ERAS reanalysis dataset (0.1° x 0.1° resolution), provided
by the Copernicus Climate Change Service (C3S) Climate Data Store (Boogaard et al., 2020). For use as
controls in regression analyses, these daily data are aggregated. Unless otherwise specified, variables are
aggregated over the calendar year. As a robustness check, alternative aggregation periods such as quarterly
and monthly aggregations are used. Temperature is the average of the daily minimum and maximum tem-
peratures, expressed in °C'. Total precipitation is the sum of daily precipitation over the aggregation period,
measured in mm. Relative humidity is a measure of the amount of water vapour in the air compared to the
maximum amount of water vapour the air can hold at that temperature, expressed as a percentage. Harmful
degree days quantifies the number of days where the maximum temperature exceeds the 90th percentile of
a location’s historical temperature distribution. Additionally, the number of days with precipitation above
the 50th, 75th, and 90th percentiles of a location’s historical distribution, and below the 5th, 15th, and 25th
percentiles, are computed to capture variations in rainfall intensity and dry spells. For these percentile-
based measures, the historical distributions are calculated at the 0.5° x 0.5° grid-cell level to ensure robust
local benchmarks.

Note. For time-varying variables, missing values are linearly interpolated.

Table A2: Sampled surveys

LSMS-ISA DHS

Country Survey years Waves Survey years
Ethiopia 2011, 2013, 2015, 2018, 2022 1-5 2000, 2005, 2011, 2016, 2019
Malawi 2010, 2013, 2016, 2019 1-4 2000, 2004, 2010, 2015

Mali 2014, 2017 1-2 1995, 2001, 2006, 2012, 2018
Niger 2011,2014 1-2 1992, 1998, 2012

Nigeria 2010, 2012, 2015, 2018 1-4 1990 2003, 2008, 2013, 2018
Tanzania 2008, 2010, 2012 1-3 1999, 2010, 2015, 2022

Note. Year reported corresponds to the start year for surveys spanning multiple calendar years.

A.2 Descriptive statistics

This subsection presents descriptive statistics for LSMS coordinates on sampled countries

along with the geographic coverage of these coordinates within country and climatic area.
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Figure Al: Area covered by the study

Climatic areas

= Tropical
= Arid
= Temperate

Note. The map displays the locations of sampled LSMS communities (pink dots) across the three primary climatic zones within the six study
countries—Tropical, Arid, and Temperate—based on Metzger et al. (2023). These large colored regions correspond to the climatic area-by-
country groups that define the spatially-specific time effects (0cqt). The inset, showing the border between Nigeria and Niger, illustrates the
resolution of the 0.1° x 0.1° grid cells where location fixed effects (1) are applied.

Table A3: Geographical distribution of sampled 0.1° x 0.1° grid cells within climatic area-by-
country groups

Country Climatic Area No. of unique sampled grid cells (0.1° x 0.1°)
Arid 372
Ethiopia Temperate 903
Tropical 890
Arid 1
Malawi Temperate 339
Tropical 171
. Arid 876
Mali Tropical 654
Niger Arid 246
Nigeria Arid 467
& Tropical 2100
Arid 30
Tanzania Temperate 343
Tropical 1461
Total 8,853

Note: Number of unique 0.1° x 0.1° grid cells containing LSMS communities that are nested within each of the broader climatic area-by-
country groups. These counts correspond to the number of location fixed effects (u¢) being absorbed by each spatially-specific time fixed
effect (§cqt) in the benchmark regression model.
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Table A4: Descriptive statistics

Mean Std. dev. Min Max Observations
M ) 3) @ ®)
A. Plot
Yield (2020 USD/ha) 1,574.65 3,263.98  0.00 19,227.22 135,726
Yield (kg/ha) 4,706.72  9,465.56  0.00  53,049.94 136,348
Crop failure (zero yield) 0.03 0.18 0.00 1.00 136,348
Plot suffered crop shock 0.35 0.48 0.00 1.00 137,507
False onset 0.05 0.22 0.00 1.00 137,948
Onset of the rainy season (week of year) 24.74 12.46 1.00 50.00 137,948
Planting month 5.90 2.27 1.00 12.00 126,440
Number of planting months 1.22 0.72 1.00 12.00 126,440
Seed quantity (kg/ha) 501.62 1,612.81 0.00 8,532.42 123,314
Seed value (2020 USD/ha) 235.61 688.89 0.00 3,908.35 123,514
Used fertiliser 0.51 0.50 0.00 1.00 136,099
Used pesticides 0.10 0.30 0.00 1.00 136,363
Main crop is a cereal 0.54 0.50 0.00 1.00 137,948
Main crop is a tuber 0.15 0.35 0.00 1.00 137,948
Main crop is a legume 0.11 0.32 0.00 1.00 137,948
Number of seasonal crops 1.66 0.97 0.00 15.00 137,820
Female plot manager 0.20 0.40 0.00 1.00 137,828
Plot manager age 47.05 15.01 0.00 100.00 137,646
Plot manager has formal education 0.50 0.50 0.00 1.00 137,605
Plot manager has wage work (past 12m) 0.10 0.30 0.00 1.00 135,852
Plot manager has wage work (past 7d) 0.10 0.30 0.00 1.00 135,226
B. Households
Per capita consumption (2020 USD) 544.25 428.44 88.12 3,669.61 29,683
Household size 5.91 3.49 1.00 84.00 36,024
HH head age 47.63 15.11 8.00 100.00 35,985
Female HH head 0.17 0.37 0.00 1.00 35,999
HH head has any wage work (past 12m) 0.11 0.31 0.00 1.00 35,962
HH head has non-farm wage work (past 12m) 0.08 0.27 0.00 1.00 35,962
Has primary-age children 0.76 0.43 0.00 1.00 31,756
Farm size (ha) 1.80 3.09 0.02 29.78 35,486
Number of fallow plots 0.14 0.49 0.00 12.00 35,709
Number of cultivated plots 473 5.28 0.00 51.00 36,091
Owns non-farm enterprise 0.34 0.47 0.00 1.00 36,064
Household asset index 0.06 0.92 -1.22 10.00 36,065
Urban household 0.10 0.30 0.00 1.00 36,091
Onset of the rainy season (week of year) 24.17 12.19 1.00 50.00 36,081
C. Individuals
Has any wage work (past 12m) 0.03 0.18 0.00 1.00 208,521
Has any wage work (past 7d) 0.03 0.18 0.00 1.00 205,742
Female 0.50 0.50 0.00 1.00 211,194
Age 22.33 18.91 0.00 100.00 210,547
Married 0.35 0.48 0.00 9.00 204,155
Has formal education 0.54 0.50 0.00 1.00 203,053
Onset of the rainy season (week of year) 24.75 11.27 1.00 50.00 213,312
D. Adult women (DHS)
Has any wage work (past 12m) 0.88 0.32 0.00 1.00 92,737
Age 18.96 3.40 10.00 46.00 79,901
Married 0.82 0.39 0.00 1.00 92,737
Years of education 3.46 3.77 0.00 20.00 92,730
HH head age 4243 13.43 13.00 97.00 92,642
HH head is female 0.18 0.39 0.00 1.00 92,737
Household size 4.46 0.92 1.00 5.00 92,737
BMI 21.88 3.54 12.02 59.72 61,558
Underweight (BMI < 18.5) 0.14 0.34 0.00 1.00 51,796
Wasted 0.10 0.31 0.00 1.00 59,073
Weight-for-height z-score -0.83 1.00 -3.99 5.96 59,073
Stunted 0.19 0.39 0.00 1.00 59,712
Height-for-age z-score -1.09 1.06 -5.99 5.70 59,712
Onset of the rainy season (week of year) 33.28 14.49 1.00 50.00 92,737
E. ERAS cells
Onset of the rainy season (week of year) 26.04 12.75 1.00 50.00 255,072
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Table A4 — continued from previous page

Mean Std. dev. Min Max Observations
)] (@) 3 “ )
Cessation of the rainy season (week of year) 34.37 11.31 1.00 52.00 170,676
Length of the rainy season 121.18 55.74 25.00 337.00 170,676
False onset 0.02 0.14 0.00 1.00 255,507
Days with precipitation below 25th percentile 31.13 45.03 0.00 269.00 255,438
Days with precipitation above 75th percentile 93.56 22.82 0.00 226.00 255,438
Maximum relative humidity 74.17 15.52 32.93 99.93 255,438
Average daily temperature (Celsius) 24.36 4.24 8.48 31.30 255,438
Total precipitation (mm) 1,261.35 826.63 75.92 11,772.02 255,438
Harmful degree days 34.45 50.61 0.00 1,275.74 255,438

Note. To account for outliers, the following continuous variables are winsorised at the 15 and 99 percentiles: Yield (2020 USD/ha), Yield
(kg/ha), Seed quantity (kg/ha), Seed value (2020 USD/ha), Per capita consumption (2020 USD), and Farm size (ha). Appendix A.l provides
detailed information on all variables, selected surveys, and weighting procedures.

A.3 Weight Construction

This appendix details the construction of the weights used in all descriptive and regression
analyses. The goal is to ensure sample representativeness while appropriately handling pooled
cross-sectional data drawn from multiple survey waves within the same country, and to ensure

balanced contributions in plot-level analyses.

The process starts with the original cross-sectional sampling weights provided by the LSMS

surveys at the household level. Let w; denote this base sampling weight for household :.

Because multiple survey waves are pooled for several countries, a re-weighting factor is ap-
plied to ensure comparability across these waves. This factor, denoted f,; for country ¢ and
survey wave t, is calculated based on the sum of the original LSMS sampling weights within
that specific country-wave (W, = Ziewave ¢, country ¢ w;) relative to the sum of the LSMS sam-
pling weights across all survey waves used for that country (W, = > Wep).

all waves ¢/ in country ¢

Specifically, the re-weighting factor is calculated as:

Wct
We

fct:

The final weight for household 7 belonging to wave ¢ in country ¢, denoted w;, is the product

of its original LSMS weight w; and this re-weighting factor:

Wct
We.

*
wi:wixfct:wix

For analyses conducted at the plot level, a final adjustment is made. Let P; be the number of
agricultural plots reported by household :. The adjusted household weight w; is divided by P;

to create a plot-level weight, w;,, for each plot p associated with household i:

3
~|E
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This rescaling ensures that each household contributes proportionally to the plot-level analysis,
irrespective of the number of plots it manages. Households with more plots do not dispropor-
tionately influence the results solely due to the number of plot observations they contribute.
All regressions and descriptive statistics presented in the paper apply either the final household

*

weight w; or the final plot weight w;,

depending on the unit of analysis.
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B Supplementary results

B.1 Trends in rainy season onset, cessation, and length

This appendix provides supplementary figures regarding the long-term trends in rainy season
onset, cessation, and length, complementing the analysis presented in Section 4. The trend
estimation methodology, including the fixed-effects model (equation 1 in Section 4) and data
construction, is detailed in the main text. All trends cover the period 1979-2024 for 0.1° x 0.1°
grid cells matched to LSMS-ISA survey locations, with standard errors clustered at the 0.5° X
0.5° level.

Forecast to 2100. Figure Bl plots the forecast to 2100. By 2100, the linear trend model
predicts an average delay of at least ten days in all countries, with extreme cases like Ethiopia

and Nigeria of more than a month.

Figure B1: Long-range forecast of the onset of the rainy season to 2100
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Forecasted change in mean onset
Country By 2050 By 2100
Ethiopia 11.5 335
Malawi 6.9 20.1
Mali 10.3 30.0
Niger 44 12.8
Nigeria 14.5 42.4
Tanzania 3.4 9.8

Note. Comparison of the long-range forecast of rainy season onset to 2100 using a linear versus. Each panel shows the annual mean onset
(in DOY) for a country, with blue dots representing the historical data (1979-2024). The dashed red line show the out-of-sample forecasts
from the linear model. The model is estimated using only historical data, and the trends are then extrapolated. The vertical dashed line
marks the year 2024, the beginning of the forecast period. The accompanying table summarizes the total change in onset days predicted by
the linear model for 2050 and 2100.
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Trends in onset variability. Beyond shifts in the average onset timing, I also examined
changes in its year-to-year variability. To do this, I first de-trended the onset data for each
country by calculating the residuals from the country-specific fixed-effects models (equation
1). Then, for each country, I computed the interquartile range (IQR) of these de-trended onset
residuals within 5-year rolling windows. Figure B2 plots the evolution of this IQR over time

for each country.

Figure B2: Country-specific trends in rainy season onset variability
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Note: Each panel shows the 5-year rolling interquartile range (IQR) of de-trended onset Day of Year (DOY) residuals for LSMS-ISA matched

grid cells within the respective country. De-trending is based on country-specific fixed-effects models (equation 1). This figure illustrates
changes in the year-to-year predictability of onset timing.

Cessation trends. As noted in Section 4, trends in the cessation of the rainy season are more
varied than onset trends. Figure B3 presents the country-specific trend analyses for the ces-
sation DOY, highlighting this heterogeneity. For instance, while Niger and Nigeria show a
tendency towards later cessation, Malawi, Mali, and Tanzania exhibit trends towards earlier
cessation. A pooled analysis for cessation (not shown) consequently reveals a relatively flat
and statistically insignificant overall trend.
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Figure B3: Country-specific trends in rainy season cessation day of year
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Note. Each panel displays the annual mean cessation day of the year for 0.1°x 0.1° grid cells matched to LSMS-ISA survey locations within
the respective country from 1979-2024. The dashed red line represents the fitted linear trend, estimated using country-specific fixed-effects
models (see equation 1). The table reports the total change in days over the full sample period as implied by the model.

Season length trends. The interplay of later onsets and diverse cessation patterns generally
leads to a decrease in the length of the rainy season across the study area. The consistent
and significant delay in the season’s onset is the primary driver of this reduction. Figure B4

illustrates these country-specific trends in the length of the rainy season.
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Figure B4: Country-specific trends in rainy season length
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Note. Each panel displays the annual mean of the length of the rainy season for 0.1°x 0.1° grid cells matched to LSMS-ISA survey locations
within the respective country from 1979-2024. The dashed red line represents the fitted linear trend, estimated using country-specific fixed-
effects models (see equation 1). The table reports the total change in days over the full sample period as implied by the model.

B.2 Issues related to identification

Selection bias. A primary concern for identification is the potential for selection bias stemming
from the sample restrictions used in the main analyses. The plot-level productivity analysis
is restricted to plots that report a complete harvest, while the household-level consumption
analysis uses an even stricter criterion, including only households for which all reported plots
have a complete harvest. This could bias the estimates if the timing of the rainy season onset
systematically affects the probability of an observation being included in these samples. For
instance, a delayed onset could push the harvest date past the survey’s fieldwork period, leading

to an underrepresentation of late-onset plots and households.

To formally test for this at both levels, I estimate linear probability models where the dependent
variable is an indicator for meeting the respective sample selection criterion. As shown in Table
B1, the results provide confidence that selection bias is not a significant concern. At the plot

level, the coefficient on the rainy season onset week is small and not statistically significant, in-
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dicating that a late onset does not predict whether an individual plot reports a complete harvest.
This result holds at the household level as well; onset timing does not significantly predict the

probability that a household reports a complete harvest for all of its plots.

Table B1: Onset of the rainy season and selection into analysis sample

Dependent variable: Complete harvest (plot) Complete harvest (household)
@ (@)
Onset of the rainy season -0.002 -0.002
(0.001) (0.003)
[0.151] [0.543]
Standardised effect -0.003 -0.003
Mean (dep. var.) 0.904 0.732
Identifying observations 148,854 43,330
Singleton observations 177 370
Countries 6 6
Survey year range 2008-2022 2008-2022

Note. OLS regression estimates of Equation 2. The dependent variable is the log of yield, measured in 2020 US dollars per hectare. The
main independent variable, Onset of the rainy season, is the calendar week when the agronomic conditions specified in Section 3 are met.
All specifications include high-resolution (0.1°x 0.1°) grid-cell fixed effects, a full set of climatic area-by-country-by-year fixed effects, and
a comprehensive set of plot-level and weather controls detailed in Section 3. Standard errors, clustered at the 0.5°x 0.5° grid-cell level, are in
parentheses; p-values are in brackets. Appendix A.l provides further details on all variable definitions, survey data, and weighting procedures.

Variation and identification. A common concern with demanding fixed-effects models is
whether sufficient variation remains in the data to precisely identify the parameters of interest.
This section presents two figures to address this concern. Figure B5 presents a variance de-
composition for the main outcome and explanatory variables to show the primary sources of
variation in the data. Figure B6 then plots the kernel density of the residualised onset of the
rainy season. This residual represents the plausibly exogenous variation used for identification,

and the figure is used to visually inspect its distribution for any signs of systematic bias.

Figure B5: Between and within variation decomposition of onset and yields

Planting month Onset of the rainy season Yield
1 — — —/ 1
— e 11 — - —

§° S 8 5 8
s kS 8
3 6 3 6 3 6
hel © ©
2 B e
3 4 3 4 3 4
=4 c f=
ot it pui
7] %] %]

2 F ’7 2 2

0Climaticareas Year  0.1°x0.1° 0.5°x0.5° 0 Clim. areas Year  0.1°x0.1° 0.5°x0.5° 0Climaticareas Year  0.1°x0.1° 0.5°x0.5°

X country X country X country

[ Between @ Within
Note. Between and within standard deviations for three standardised variables: planting month, onset of the rainy season, and log yield. The

decomposition is shown for three different panel data structures: climatic area by country, year, and 0.1° x 0.1° grid cell. The sample used
for this decomposition is the plot-level LSMS-ISA sample as described in Section 3.
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Figure B6: Residualised onset of the rainy season
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Note. The figure plots the kernel density of the residualised onset of the rainy season for the three main samples used in the analysis: the plot-
level agricultural sample, the household-level consumption sample, and the women’s nutrition sample (DHS). For each sample, the residuals
are obtained by regressing the onset week on the full set of fixed effects used in its corresponding benchmark specification. For visual clarity,
the distributions are trimmed at -10 and 10. The onset of the rainy season is defined as the week of the year when the agronomic conditions
specified in Section 3 are met.

Robustness to location-specific trends. Recent literature highlights that panel analyses of
climate impacts can produce biased estimates if unobserved, location-specific trends correlate
with weather variables, a concern particularly relevant when using binned regressors (Jones
et al.,, 2025). While my main analysis relies on a continuous measure of rainy season onset,
this issue is pertinent to the tercile indicators I use in two secondary analyses: testing for

asymmetric effects on yields (Figure 3) and examining farmer awareness of shocks (Table 7).

To address this potential issue, I augment my benchmark specification by controlling for location-
specific linear trends, which is the most suitable of the strategies proposed by Jones et al. (2025)
given the limited length of my panel. While assuming a linear trend for yields warrants cau-
tion, evidence suggests that for the countries I study, yields have largely stagnated (Wollburg
et al., 2024), making a linear trend a reasonable first-order approximation for any smooth, un-
observed local changes. This is further supported by Jones et al. (2025), who find that crop
yield estimates appear less susceptible to this form of bias. My implementation interacts the
0.5°x 0.5° grid-cell fixed effects with a linear year trend.

As I show in Figure B7 and Table B2, my findings are robust to this more demanding speci-
fication. The inclusion of these trends does not alter the key results: the negative impact on
agricultural yields remains driven entirely by late onsets, and farmers’ awareness of a shock is

still only triggered by exceptionally late onsets.
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Figure B7: Asymmetric effects — Correcting for binning bias
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Note. The figure displays OLS regression coefficients for indicator variables representing the bottom tercile and top tercile of the historical
rainy season onset distribution within 0.5° x 0.5° grid cells. The middle tercile is the omitted reference category. The dependent variable
is log agricultural yields (2020 USD per hectare). TThe regression augments equation (2) by including interactions between the 0.5° x 0.5°
grid-cell fixed effects and a linear time trend. Bars represent 95% confidence intervals based on standard errors clustered at the 0.5° x 0.5°
grid-cell level.

Table B2: Farmers’ awareness — Correcting for binning bias

Dependent variable: Crops shock Drought shock
() ®))
Earliest onset tercile -0.011 0.019
(0.018) (0.018)
[0.530] [0.284]
Latest onset tercile 0.029 0.039
(0.014) (0.014)
[0.044] [0.005]
Standardised effect
Mean (dep. var.) 0.411 0.202
Identifying observations 136,420 132,044
Singleton observations 173 180
Countries 6 6
Planting year range 2008-2022 2008-2022

Note. OLS regression estimates of Equation 2. The dependent variable in each column is a binary indicator for whether a farmer reported a
negative shock on a given plot. Onset of the rainy season is the week of the year when conditions specified in Section 3 are met. Earliest onset
tercile and Latest onset tercile are indicators for whether the onset of the rainy season for a location falls into the earliest or latest tercile of its
historical distribution, with the middle tercile serving as the omitted category. These terciles are defined separately for each 0.5° x 0.5° grid
cell based on its long-term (1979-2020) onset history. For comparison, Panel A presents results using the continuous onset week variable. All
specifications augment equation (2) by including interactions between the 0.5° x 0.5° grid-cell fixed effects and a linear time trend. Standard
errors, clustered at the 0.5° x 0.5° grid-cell level, are in parentheses. p-values are in brackets. Appendix A.l provides detailed information on
all variables.

B.3 Robustness of impact on productivity

This appendix presents a series of robustness checks for the main findings on the impact of
rainy season onset on agricultural productivity, as discussed in Section 6.1 and presented in
Table 1.

Alternative local trends. The stability of the estimated onset coefficient was tested against
alternative specifications that incorporate different ways of controlling for local time trends.
Introducing location-specific time trends effectively changes the definition of the onset shock,

as it alters the variation from which the effect is identified by removing different local temporal
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patterns. Table B3 shows that the negative impact of a delayed onset on agricultural produc-
tivity remains consistent even when employing these more demanding specifications for local

trends, which vary the geographic level at which such trends are defined.

Table B3: Alternative local trends

Dependent variable: Log yields (2020 USD per hectare)
@ @) 3 “

Onset of the rainy season -0.017 -0.019 -0.016 -0.020

(0.007) (0.007) (0.007) (0.008)

[0.012] [0.004] [0.034] [0.012]
Standardised effect -0.027 -0.030 -0.022 -0.022
Mean (dep. var.) 5.744 5.744 5.744 5.744
Identifying observations 129,919 129,919 129,919 129,913
Singleton observations 180 180 180 186
Countries 6 6 6 6
Planting year range 2008-2022 2008-2022 2008-2022 2008-2022
Level of local trend Country Climatic area Admin level 1 Admin level 2

Note. OLS regression estimates of Equation 2. The dependent variable is the log of yield, measured in 2020 US dollars per hectare. Onset of
the rainy season is the week of the year when conditions specified in Section 3 are met. All specifications include 0.1° x 0.1° grid-cell fixed
effects. The columns differ by the inclusion of location by planting year trends. A full list of these controls is presented in Section 3. Standard
errors clustered at the 0.5° x 0.5° grid-cell level are reported in parentheses. p-values are reported in brackets. Appendix A.l provides detailed
information on variables, selected surveys, and weighting procedures. The standardised effect shows the impact of a one standard deviation
change in the onset week.

Past and future onsets. To assess whether the estimated impact is genuinely contemporaneous,
I introduced past (one-year lag) and future (one-year lead, a placebo) season onset dates into
the benchmark specification (equation 2). As shown in Figure B8, neither past nor future onset

dates significantly affect current season productivity.

Figure B8: Timing
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Note. Marginal effects of rainy season onset on log yields measured in 2020 USD per hectare. Estimates are based on equation 2. On the
x-axis, t refers to the onset week of the actual planting year, 7-/ refers to the onset week from the previous year, and 7+ refers to the onset
week from the subsequent year, serving as a placebo test. All specifications also include weather and plot-level controls; a full list of these
controls is presented in Section 3. Standard errors clustered at the 0.5° x 0.5° grid-cell level. Appendix A.1 provides detailed information on
variables, selected surveys, and weighting procedures.

The roles of rainy season cessation and length. To better understand the distinct role of rainy

season onset relative to other timing features, I examined specifications that also incorporate
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cessation timing and total season length. Importantly, the agronomic conditions defining cessa-
tion are not met in all location-years, leading to missing values for cessation and, consequently,
length for some observations. Therefore, in Table B4, I restrict the sample to observations with

non-missing cessation and length data.

Table B4: Cessation and length of the rainy season

Dependent variable: Log yields (2020 USD per hectare)
@ @) 3 (C2) ()
Cessation of the rainy season -0.004 -0.003
(0.004) (0.004)
[0.254] [0.450]
Onset of the rainy season -0.016 -0.018 -0.017
(0.008) (0.008) (0.008)
[0.045] [0.025] [0.029]
Length in weeks -0.003 -0.003
(0.004) (0.004)
[0.514] [0.426]
Mean (dep. var.) 5.616 5.616 5.616 5.616 5.616
Identifying observations 106,511 106,511 106,511 106,511 106,511
Singleton observations 97 97 97 97 0
Countries 6 6 6 6 6
Planting year range 2008-2022 2008-2022 2008-2022 2008-2022 2008-2022

Note. OLS regression estimates of Equation 2. The dependent variable is the log of yield, measured in 2020 US dollars per hectare.Onset of
the rainy season is the week of the year when conditions specified in Section 3 are met; Cessation of the rainy season is the week of the year
when conditions specified in Section 3 are met; and Length is the total number of weeks the rainy season lasted, calculated from the onset and
cessation dates. All specifications include 0.1° x 0.1° grid-cell fixed effects, climatic area by country by year fixed effects, weather controls,
and plot-level controls (a full list of these controls is presented in Section 3). The sample for these regressions is restricted to observations with
non-missing data for cessation and length. Standard errors, clustered at the 0.5° x 0.5° grid-cell level, are reported in parentheses; p-values
are reported in brackets. Appendix A.l provides further details on variable construction.

Alternative specifications for weather controls. Table B5 presents estimates of equation 2

using weather variables aggregated at different frequencies.

Table B5: Alternative weather controls

Dependent variable: Log yields (2020 USD per hectare)
[€)) (2) 3)

Onset of the rainy season -0.021 -0.023 -0.019

(0.007) (0.007) (0.007)

[0.002] [0.002] [0.009]
Standardised effect -0.033 -0.033 -0.027
Mean (dep. var.) 5.744 5.744 5.744
Identifying observations 129,919 129,919 129,919
Singleton observations 180 180 180
Countries 6 6 6
Planting year range 2008-2022 2008-2022 2008-2022
Time aggregation Yearly Quarterly Monthly

Note: OLS regression estimates of Equation 2. The dependent variables is the log of yield (measured in 2020 US dollars per hectare). Onset
of the rainy season is the week of the year when conditions specified in Section 3 are met. All specifications include 0.1° x 0.1° grid-cell
fixed effects, climatic area by country by year fixed effects, and plot-level controls (for yield regressions) or household-level controls (for
consumption regressions) as listed in Section 3. The columns differ by the temporal aggregation of the weather controls: Columns (1) and
(3) use weather controls aggregated at the quarterly level, while Columns (2) and (4) use weather controls aggregated at the monthly level.
Standard errors, clustered at the 0.5° x 0.5° grid-cell level, are reported in parentheses; p-values are reported in brackets. Appendix A.l
provides further details on variable construction.

Alternative transformations of yield. The negative impact of a delayed onset on agricultural

productivity persists when using alternative transformations of the yield variable. Table B6
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shows results using log(1+yield), the inverse hyperbolic sine (IHS) transformation of yield,

and yield levels (after trimming the 1st and 99th percentiles to mitigate outlier influence).

Table B6: Alternative transformations of yield

Dependent variable transformation Yield (trimmed) Log(1+Yield) IHS(Yield)
(1) 2 3)
Onset of the rainy season -23.513 -0.028 -0.030
(10.898) (0.009) (0.009)
[0.031] [0.001] [0.001]
Standardised effect -36.476 -0.044 -0.046
Mean (dep. var.) 801.653 5.547 6.203
Identifying observations 133,530 134,880 134,880
Singleton observations 182 181 181
Countries 6 6 6
Planting year range 2008-2022 2008-2022 2008-2022

Note: OLS regression estimates of Equation 2. Each column uses a different transformation of yield (measured in 2020 USD per hectare) as
the dependent variable. Column (1) uses yield levels (measured in 2020 US dollars per hectare), with the 1st and 99th percentiles trimmed.
Column (2) uses the log of (1 + yield). Column (3) uses the inverse hyperbolic sine (IHS) transformation of yield. Onset of the rainy season
is the week of the year when conditions specified in Section 3 are met. All specifications include 0.1° x 0.1° grid-cell fixed effects, climatic
area by country by year fixed effects, weather controls, and plot-level controls (a full list of these controls is presented in Section 3). Standard
errors, clustered at the 0.5° X 0.5° grid-cell level, are reported in parentheses; p-values are reported in brackets. Appendix A.1 provides further
details on variable construction.

Alternative measures of output. The negative impact of a delayed onset extends to other
measures of farm output. Table B7 presents results for the impact of onset timing on: output in
kilograms, output in constant 2020 US dollars, log of yields in kilograms per hectare, and an

indicator for crop failure, defined as zero reported yield.

Table B7: Alternative output measures

Dependent Variable: Log output (2020 Log output (kg) Log yield (kg per Crop failure
USD) hectare)
(1) (2) (3) 4)

Onset of the rainy season -0.019 -0.028 -0.031 0.002

(0.008) (0.008) (0.006) (0.001)

[0.015] [0.000] [0.000] [0.047]
Standardised effect -0.030 -0.044 -0.049 0.003
Mean (dep. var.) 4.331 5.407 6.824 0.037
Identifying observations 131,185 131,756 130,475 135,504
Singleton observations 179 178 179 178
Countries 6 6 6 6
Planting year range 2008-2022 2008-2022 2008-2022 2008-2022

Note. OLS regression estimates of Equation 2. Onset of the rainy season is the week of the year when conditions specified in Section 3 are met.
All specifications include 0.1° x 0.1° grid-cell fixed effects and climatic area by country by year fixed effects. All specifications also include
weather and plot-level controls; a full list of these controls is presented in Section 3. Standard errors, clustered at the 0.5° x 0.5° grid-cell level,
are reported in parentheses; p-values are reported in brackets. Appendix A.l provides detailed information on variables, selected surveys, and
weighting procedures.

Permutation-based inference. To further evaluate the statistical robustness of the estimated
effect of rainy season onset on agricultural productivity, I implemented a series of permutation
tests. These tests involve re-estimating the impact of rainy season onset (equation 2, using spec-
ifications from Table 1) across 500 iterations for each of three distinct randomisation scenarios.
Scenario A permutes planting years within local 0.5° x 0.5° grid cells, effectively reassigning

the timing of the onset shock experienced by a household to that of another household in a dif-
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ferent wave but within the same local area. Scenario B applies a similar permutation of planting

years but within the broader scope of each country. Scenario C directly tests the importance of

an observation’s specific geographic location by randomising its geographic identifiers within

its country. This process reassigns the experienced weather and onset data to the household

while holding its original planting year constant.

Figure B9: The effect on yields: permutation-based inference

A. Planting year within 0.5°x0.5° cell

B. Planting year within countries

C. Across communities within countries
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Empirical p-values
1 coefficients A B C
Benchmark
specification (1) -0.020 0.000 0.000 0.000
specification (2) -0.020 0.000 0.000 0.000
specification (3) -0.019 0.000 0.000 0.000

Note. Empirical distributions of estimated coefficients for Onset of the rainy season from 500 permutations for three randomisation scenar-
ios. Panel A: Planting year permuted within 0.5° X 0.5° grid cells. Panel B: Planting year permuted within countries. Panel C: Geographic
location (and thus onset/weather) permuted across communities within countries, holding planting year constant. Each distribution is
generated by re-estimating the three benchmark specifications from Table 1. The sub-table reports the empirical p-values, indicating the
proportion of permuted coefficients that are as extreme or more extreme than the actual estimated coefficients. All models include the full
set of fixed effects and controls as per Equation 2. Appendix A.l provides detailed information on variables.

Alternative clustering of standard errors. The benchmark analysis clusters standard errors

at the 0.5° x 0.5° grid-cell level to account for potential spatial correlation in errors. To assess

the sensitivity of statistic inference to this choice, Table B8 presents the estimated coefficient
for rainy season onset on log yields from the preferred specification (Table 1, Column 3) under
several alternative clustering assumptions. These include clustering at finer (0.1° x 0.1° grid

cell) and coarser (1° x 1° grid cell) spatial units, as well as two-way clustering by spatial unit

and planting year.
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Table B8: Alternative clustering of standard errors

Dependent variable: Log yields (2020 USD per hectare)
Level of clustering None 0.1°x0.1° 0.5°%0.5° 1°x1° 0.5°x0.5° 1°x1° x
X planting planting
year year
@) (@) (3) “ ®) )
Onset of the rainy season -0.021 -0.021 -0.021 -0.021 -0.021 -0.021
(0.004) (0.007) (0.007) (0.007) (0.008) (0.008)
[0.000] [0.001] [0.002] [0.004] [0.023] [0.025]
Standardised effect -0.033 -0.033 -0.033 -0.033 -0.033 -0.033
Mean (dep. var.) 5.744 5.744 5.744 5.744 5.744 5.744
Identifying observations 129,919 129,919 129,919 129,919 129,919 129,919
Singleton observations 180 180 180 180 180 180
Countries 6 [§ 6 6 6 6
Planting year range 2008-2022 2008-2022 2008-2022 2008-2022 2008-2022 2008-2022

Note. OLS regression estimates of Equation 2. The dependent variable is the log of yield, measured in 2020 US dollars per hectare. Onset of
the rainy season is the week of the year when conditions specified in Section 3 are met. All specifications include 0.1° x 0.1° grid-cell fixed
effects and climatic area by country by year fixed effects. All specifications also include weather and plot-level controls; a full list of these
controls is presented in Section 3. Each column uses a different clustering level for standard errors. Standard errors are reported in parentheses.
p-values are reported in brackets. Appendix A.l provides detailed information on variables, selected surveys, and weighting procedures.

B.4 Supplementary results on adaptation strategies

This appendix provides additional results for adaptation margins, supplementing the summary
findings presented in Section 6.3 and Table 4. The tables below present these supplementary
findings: Table B9 details responses in the use of various on-farm inputs including seeds, fer-
tilisers, pesticides, and on-farm labour; Table B10 covers crop choice and plot composition;
Table B11 shows changes in land use along the extensive and intensive margin; and Table B 12

examines sectoral labour allocation.

Table B9: Onset of the rainy season and input use

Dependent variable: Seed value Inorganic Inorganic Days from Days from
fertiliser fertiliser value family hired workers
quantity

(1) 2 (3) @ 5)

Onset of the rainy season 0.005 0.002 -0.014 2.204 -5.854

(0.009) (0.013) (0.009) (24.010) (4.320)

[0.591] [0.880] [0.125] [0.927] [0.176]
Standardised effect 0.008 0.003 -0.020 3.539 -9.388
Mean (dep. var.) 2.953 3.906 4.787 1070.531 102.819
Identifying observations 121,001 44,516 46,098 117,596 117,145
Singleton observations 198 192 195 143 143
Countries 6 6 6 5 5
Planting year range 2008-2022 2008-2022 2008-2022 2008-2022 2008-2022

Note. OLS regression estimates of Equation 2. The dependent variables are: Seed value, the value of seeds used, measured in 2020 US
dollars per hectare; Inorganic fertiliser quantity, the natural logarithm of the quantity of inorganic fertiliser applied, measured in kilograms
per hectare; Inorganic fertiliser value, the natural logarithm of the value of inorganic fertiliser used, measured in 2020 US dollars per hectare;
Days from family, the total number of days per hectare family members worked on the plot; and Days from hired workers, the total number
of days per hectare hired workers worked on the plot. Onset of the rainy season is the week of the year when conditions specified in Section
3 are met. All specifications include 0.1° x 0.1° grid-cell fixed effects, climatic area by country by year fixed effects, weather controls, and
plot-level controls as listed in Section 3. Standard errors, clustered at the 0.5° x 0.5° grid-cell level, are reported in parentheses; p-values are
in brackets. Appendix A.l provides further details on variable construction.
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Table B10: Onset of the rainy season and crop choice

Dependent variable: Share of plot value attributed to Plot contains
Cereals Tubers Legumes Cereals Tubers Legumes
1) @) 3) “ ®) )

Onset of the rainy season 0.001 -0.002 0.000 -0.003 -0.002 -0.001

(0.002) (0.001) (0.001) (0.002) (0.001) (0.002)

[0.596] [0.013] [0.690] [0.098] [0.044] [0.623]
Standardised effect 0.001 -0.004 0.001 -0.004 -0.004 -0.001
Mean (dep. var.) 0.408 0.056 0.126 0.645 0.076 0.234
Identifying observations 136,855 136,855 136,855 136,855 136,855 136,855
Singleton observations 175 175 175 175 175 175
Countries 6 6 6 6 6 6
Planting year range 2008-2022 2008-2022 2008-2022 2008-2022 2008-2022 2008-2022

Note. OLS regression estimates of Equation 2. The dependent variables are: Share of plot value attributed to cereals/tubers/legumes, the
proportion of the total production value of the plot derived from the respective crop category. Plot contains cereals/tubers/legumes are
indicator variables taking value 1 if the plot contains any crop from the respective category, and O otherwise. Onset of the rainy season is the
week of the year when conditions specified in Section 3 are met. All specifications include 0.1° x 0.1° grid-cell fixed effects, climatic area
by country by year fixed effects, weather controls, and plot-level controls as listed in Section 3. Standard errors, clustered at the 0.5° x 0.5°
grid-cell level, are reported in parentheses; p-values are in brackets. Appendix A.1 provides further details on variable construction.

Table B11: Onset of the rainy season and land use

Dependent variable: No. fallow No. cultivated Log total Log total
plots plots cultivated area farm size
M @) 3 (G)
Onset of the rainy season 0.004 0.016 -0.003 0.002
(0.003) (0.032) (0.007) (0.006)
[0.128] [0.610] [0.631] [0.729]
Standardised effect 0.007 0.026 -0.005 0.003
Mean (dep. var.) 0.153 4.451 -0.134 0.055
Identifying observations 30,881 30,881 30,613 30,696
Singleton observations 313 313 320 320
Countries 6 6 6 6
Survey year range 2008-2022 2008-2022 2008-2022 2008-2022

Note. OLS regression estimates of Equation 2. The dependent variables are household-level measures: No. fallow plots, the number of
plots left unused by the household; No. cultivated plots, the number of plots used in agriculture by the household; Column (3) Log Total
Cultivated Area, the natural logarithm of total area in hectares actively cultivated by the household; and Column (4) Log total farm size, the
natural logarithm of total area in hectares to which the household has planting rights. Onset of the rainy season is the week of the year when
conditions specified in Section 3 are met. All specifications include 0.1° x 0.1° grid-cell fixed effects, climatic area by country by year fixed
effects, weather controls, and household-level controls (a full list of these controls is presented in Section 3). Standard errors, clustered at the
0.5° x 0.5° grid-cell level, are reported in parentheses; p-values are reported in brackets. Appendix A.l provides further details on variable
construction, selected surveys, and weighting procedures. Data are from the LSMS-ISA household-level sample.
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Table B12: Onset of the rainy season and sector choice

Last 12 months Last 7 days
Dependent variable: Any wage Agriculture Services Any wage Household
work work business
@ (@) A (G (&)
A. Working-age individuals
Onset of the rainy season -0.001 -0.001 -0.000 -0.002 -0.001
(0.001) (0.000) (0.000) (0.000) (0.001)
[0.029] [0.254] [0.131] [0.000] [0.158]
Standardised effect -0.002 -0.001 -0.001 -0.003 -0.002
Mean (dep. var.) 0.050 0.018 0.025 0.054 0.127
Identifying observations 224,735 224,735 224,735 223915 224,140
Singleton observations 8 8 8 8 9
Countries 6 6 6 6 6
Survey year range 2008-2022 2008-2022 2008-2022 2008-2022 2008-2022
B. Household head
Onset of the rainy season -0.002 -0.001 -0.001 -0.003 -0.002
(0.001) (0.001) (0.001) (0.001) (0.001)
[0.167] [0.464] [0.438] [0.005] [0.136]
Standardised effect -0.003 -0.001 -0.001 -0.005 -0.004
Mean (dep. var.) 0.121 0.032 0.069 0.130 0.197
Identifying observations 47,653 47,653 47,653 47,402 47,582
Singleton observations 353 353 353 353 355
Countries 6 6 6 6 6
Survey year range 2008-2022 2008-2022 2008-2022 2008-2022 2008-2022

Note. OLS regression estimates of Equation 2. The dependent variables are indicator variables (1 if the condition is met, 0 otherwise) for
individuals of working age: Any wage work, reports working for a wage in the past twelve months; Agriculture, reports working for a wage
in the agricultural sector in the past twelve months; Services, reports working for a wage in the service sector in the past twelve months; Any
wage work, reports working for a wage in the past seven days; Household business, reports working for a household business in the past seven
days. Onset of the rainy season is the week of the year when conditions specified in Section 3 are met. All specifications include 0.1° x 0.1°
grid-cell fixed effects, climatic area by country by year fixed effects, weather controls, and individual-level controls (sex, age, age squared,
marital status, formal education, urban residence, household size) as specified in Section 5. Standard errors, clustered at the 0.5° x 0.5°
grid-cell level, are reported in parentheses; p-values are in brackets. Appendix A.1 provides further details on variable construction.
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Table B13: Lagged onset on adaptation

Timing Inputs Main crop is
Dependent variable: Planting Planting Harvest Seeds Fertiliser Pesticide Cereals Tubers Legumes
(DOY) duration (DOY)
@ &) 3 “ (5) Q) 0 (®) ©
Onset of the rainy season, t — 1 0.036 0.001 -0.075 -0.004 -0.003 0.002 -0.003 0.001 0.000
(0.208) (0.003) (0.999) (0.009) (0.002) (0.001) (0.001) (0.001) (0.001)
[0.862] [0.769] [0.940] [0.639] [0.100] [0.098] [0.047] [0.175] [0.760]
Standardised effect 0.062 0.002 -0.126 -0.007 -0.005 0.004 -0.005 0.002 0.001
Mean (dep. var.) 188.934 1.105 250.370 3.453 0.516 0.066 0.572 0.069 0.122
Identifying observations 125,609 125,609 106,970 120,669 135,081 135,306 136,855 136,855 136,855
Singleton observations 74 74 117 197 173 173 175 175 175
Countries 5 5 5 6 6 6 6 6 6
Planting year range 2009-2022 2009-2022 2009-2022 2009-2022 2008-2022 2008-2022 2008-2022 2008-2022 2008-2022

Note. OLS regression estimates of Equation 2. The dependent variables are defined as follows. Planting (DOY) is the approximated first planting day of the year; this approximation assumes planting occurred on the
15th of the reported month. Planting duration is the number of distinct months planting occurred on the plot. Harvest (DOY) is the approximated first harvest day of the year, assuming harvest occurred on the 15th of
the reported month. Seed is the log of seed quantity used on the plot, measured in kilograms per hectare. Fertiliser is an indicator variable taking the value 1 if any fertiliser, whether organic or inorganic, was used,
and 0 otherwise. Pesticide is an indicator variable that equals 1 if any pesticide was used and O otherwise. Cereals, Tubers, and Legumes are indicator variables taking the value 1 if the main crop by production value
on the plot belongs to the respective category, and 0 otherwise. Onset of the rainy season, t — 1 is the week of the year when conditions specified in Section 3 in the year before the current season. All specifications
include 0.1° x 0.1° grid-cell fixed effects and climatic area by country by year fixed effects. All specifications also include weather and plot-level controls; a full list of these controls is presented in Section 3. Standard
errors, which are clustered at the 0.5° x 0.5° grid-cell level, are reported in parentheses. p-values are reported in brackets. Appendix A.l provides further details on variable construction, selected surveys, and weighting
procedures.



B.5 Simulation methodology to correct for aggregation bias

The use of monthly-level planting data may introduce aggregation bias when I estimate the
effect of daily-level weather shocks. To address this, I implement a simulation exercise de-
signed to recover the true daily-level coefficient from my coarse monthly data. The simulation
involves two main stages: first, generating daily planting probability distributions for each loca-
tion, and second, using these distributions in an iterative search algorithm to find the unbiased

daily coefficient.

Generating daily planting probability distributions. To disaggregate the observed monthly
planting dates into daily probabilities, I generate a daily probability mass function (PMF) for
each unique ERAS location in my sample. This PMF represents the likelihood of planting
occurring on any given day of the year. I employ two distinct methods to construct these
distributions as a robustness check. For each method, I generate 20 unique drawing pools, one
for each iteration of the main simulation. Each drawing pool contains 100 simulated planting
dates for each plot observation, providing a rich set of potential outcomes for the simulation. To
reduce noise from outlier responses, I only consider planting months that, for a given location,

account for at least 1% of the total observations for that location.

The first method is a parametric approach that fits a three-parameter skew-normal distribution to
the sequence of observed planting months. This captures the timing and potential asymmetry of
the planting season. To correctly model seasons that cross over the new year (e.g., November—
February), I transform the month data onto a continuous axis where January becomes month
13 and February becomes month 14, allowing the distribution to be fitted over an uninterrupted
domain. The resulting continuous probability density function is then discretised to generate
daily probabilities. Figure B10 provides a visual representation of this method for a random

sample of locations.
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Figure B10: Implied daily planting probabilities from kernel density estimation
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Note. TThis figure displays a random sample of nine ERAS locations to illustrate the fit of the skew-normal distribution. The blue bars
represent the density of observed monthly planting dates, with the day-of-year (DOY) approximated as the 15th of the reported month. The
red line is the implied daily planting probability, derived by fitting a three-parameter skew-normal distribution to the sequence of observed
months for each location. To reduce noise from outlier responses, only planting months that account for at least 1% of the total observations
for a given location are considered. The model accounts for year-crossing seasons by transforming the month variable onto a continuous axis
(e.g., January becomes month 13) before fitting the distribution.

As an alternative, I use a non-parametric Kernel Density Estimation (KDE). This method is
more flexible and fits a Gaussian KDE directly to the day-of-year (DOY) of each planting
observation, approximated as the 15th of the reported month. To handle the circular nature of
annual data, I employ a mirroring technique. Planting dates from early in the year (e.g., day
15) are duplicated and shifted forward by a year (to day 380), while points from late in the year
(e.g., day 350) are duplicated and shifted backward (to day -15). This ensures the KDE treats
the year as a continuous loop, correctly modeling the density across the year-end boundary.
Figure B11 illustrates the fit of the KDE method.
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Figure B11: Implied daily planting probabilities from kernel density estimation
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Note. This figure displays a random sample of nine ERAS locations to illustrate the fit of the Kernel Density Estimator (KDE). The blue bars
represent the density of observed monthly planting dates, with the day-of-year (DOY) approximated as the 15th of the reported month. The
red line is the implied daily planting probability, derived by fitting a Gaussian KDE to the DOY data for each location. To reduce noise from
outlier responses, only planting months that account for at least 1% of the total observations for a given location are considered. The model
accounts for the circular nature of annual data using a mirroring technique, where data points near the start and end of the year are duplicated
and shifted to ensure a continuous density across the year-end boundary.

Simulation design. The simulation exercise uses an iterative search algorithm to find the true
daily-level coefficient (S441,) that, when subjected to the same temporal aggregation as my
observed data, reproduces the coefficient estimated from the original monthly data. The process

is as follows:

1. Establish target coefficient. First, I establish a benchmark by running my main regres-
sion specification. I convert the observed planting months to a day-of-year (approximated
as the 15th of the month) and regress this on the onset of the rainy season. The resulting

coefficient serves as the target for the simulation to match, denoted as 4, get-

2. Generate stable residuals. Before the main simulation, I run a preliminary 10-iteration
loop to generate a stable counterfactual residual for my treatment variable. This step
purges the residual of any confounding effects that might arise from shifts in the year-

level fixed effects, which can occur when the treatment effect is applied to the daily data.

3. Iterative search for (3,,,. The core of the simulation is a while loop that searches for

the true daily coefficient. The search begins with an initial guess where Bdm-ly = Brarget-
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In each iteration, I simulate a daily planting date for each observation by taking a random
draw from the appropriate daily probability distribution and adding the treatment effect,
which is calculated as the stable residual multiplied by the current guess for Bdaﬂy. This
new dataset of simulated daily planting dates is then aggregated back to the monthly
level, mimicking the coarseness of the original survey data. I re-run the benchmark
regression on this simulated monthly data to obtain a new coefficient, SB;nuatea- The
algorithm compares Sg;nuiated tO the target Biq,get, adjusts the guess for Bdaﬂy based on
the difference, and the loop repeats. The process continues until 5;u1ateq CONVErges to

Btarget (i.€., the difference is within a pre-defined tolerance).

The final, converged value of Bdaﬂy is my estimate of the true, unbiased daily-level coefficient.
This entire procedure is performed independently for both the Skew-Normal and KDE-based

drawing pools.
Figure B12: Correcting for aggregation bias in planting dates
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Note. Comparison of regression coefficients from observed, monthly-reported planting data with two simulated point estimates of the under-
lying true daily coefficient. The Benchmark is the coefficient from a regression of planting day on the week of rainy season onset using the
coarse monthly data; the vertical line represents its 95% confidence interval. This benchmark coefficient serves as the target for the simulation.
The Skew Normal and Kernel Density Estimation points are the results of an iterative search for the true daily-level coefficient that, after being
coarsened to a monthly frequency, reproduces the benchmark estimate. The y-axis represents the number of days planting is delayed for a
one-week delay in the rainy season onset. All regressions are based on equation (2). See Appendix B.5 for further details on the simulation.
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B.6 The role of adjusting planting dates

As established in the main text, farmers adapt to a delayed rainy season by shifting their plant-
ing dates . While this low-cost adaptation strategy is effective—a finding supported by the
instrumental variable (IV) analysis presented in this appendix—quantifying the magnitude of
the effect is challenging. The primary difficulty is the endogeneity of a farmer’s planting deci-
sion, which biases simple OLS estimates. For instance, the OLS estimate in Column 1 of Table

B 14 suggests only a minimal mitigating effect .

To obtain a causal estimate, I therefore employ an instrumental variable (IV) strategy that lever-
ages local planting norms. The core intuition is twofold. First, for the instrument to be relevant,
it must predict a farmer’s own planting date. I argue that the planting decisions of farmers in a
broad surrounding area, driven by shared agro-climatic conditions and cultural norms, will be
highly correlated with an individual farmer’s timing. Second, for the instrument to be valid, it
must satisfy the exclusion restriction—meaning it should not directly affect a plot’s yield other
than through the farmer’s own planting choice. A potential threat to this restriction would be an
unobserved, spatially correlated shock like a local weather event that affects both neighbours’
planting and the farmer’s own yields. To address this, the model conditions on weather out-
comes measured at the farmer’s own high-resolution 0.1° x 0.1° cell. Conditional on these local
weather controls, the planting dates of neighbors should not have a direct impact on a farmer’s
own productivity. Based on this logic, I construct a leave-one-out mean instrument. I first cre-
ate an adjusted planting date for each plot by taking the residual based on equation (2). This
regression includes location fixed effects at the 0.5° x 0.5° grid-cell level and the benchmark
local trend, which effectively de-means and de-trends the planting date. The instrument is then
the average of these residuals for all other plots within a broad 1° x 1° region, excluding those

from the plot’s own immediate 0.1° x 0.1° cell.

The results of this IV strategy are presented in Columns (2) and (3) of Table B 14. The reduced-
form estimate in Column (2) is positive and statistically significant, confirming that during a
delayed onset, crop yields are higher in regions where neighbouring farmers also delayed their
own planting. Column (3) presents the main two-stage least squares (2SLS) estimate. This
estimate must be interpreted with caution, as the instrument is weak by conventional standards
(significant only at the 10% level). With this caveat in mind, the coefficient provides our best
available, though suggestive, estimate of the causal effect. The magnitude of the coefficients
implies that a strategic delay in planting of approximately two weeks is sufficient to offset half
of the negative productivity shock from a one-week delay in the rainy season. This greater than
one-to-one tradeoff can be understood through two complementary factors. First, the estimated
benefit of delaying planting is likely an underestimate due to measurement error (Section 1.6.3);
the monthly reporting of planting dates attenuates the coefficient, which in turn inflates the

calculated number of weeks needed for the trade-off. Second, the IV strategy identifies the
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benefit of delaying planting relative to the local average. In a context where the rainy season
is systematically shifting later, this local average itself may be sub-optimal. If the entire local
planting calendar is lagging behind the shifting climate, the measured coefficient only captures

the benefit of a marginal adjustment, not a shift to a truly optimal schedule.

Table B14: Shifting dates as a strategy

Dependent variable: Log yields (2020 USD per hectare)
Estimator OLS OLS (reduced form) 2SLS
@ @) 3
Onset of the rainy season -0.026 -0.027 -0.026
(0.009) (0.009) (0.010)
[0.003] [0.003] [0.009]
X Planting date (week of the year) 0.000 0.006
(0.000) (0.003)
[0.028] [0.055]
x Planting date in neigh. cells (week of the year) 0.002
(0.001)
[0.031]
Mean (dep. var.) 5.781 5.782 5.782
Identifying observations 118,933 116,058 116,058
Singleton observations 73 75 71
Countries 5 5 5
Interview year range 2009-2022 2009-2022 2009-2022

Note. OLS and 2SLS regression estimates based on Equation 2. The dependent variable is the log of yield, measured in 2020 US dollars per
hectare. This table presents three specifications. Column (1) shows the OLS estimate of the interaction between onset week and the plot’s
own planting date. Column (2) presents the reduced-form OLS estimate, using the interaction with the instrument. Column (3) presents the
two-stage least squares (2SLS) instrumental variable estimate. The instrument, Planting date in neigh. cells, is the leave-one-out mean of
adjusted planting dates of other plots in the surrounding 1° x 1° grid cell. Onset of the rainy season is the week of the year when conditions
specified in Section 3 are met. All specifications include 0.1° x 0.1° grid-cell fixed effects, climatic area by country by year fixed effects, and
a full set of weather and plot-level controls. Standard errors, clustered at the 0.5° x 0.5° grid-cell level, are in parentheses. p-values are in
brackets. Appendix A.l provides detailed information on variables, selected surveys, and weighting procedures.

B.7 Additional results for nutritional outcomes

This section presents supplementary analyses for the nutritional outcomes discussed in Section
6.2. First, it presents the results for children. Second, it tests the sensitivity of the main findings
for women to the specification of the location fixed effects. Finally, it examines the results for

women on a broader sample including those outside agricultural households.

Table B15: Onset of the rainy season and children’s nutrition

Dependent variable: Weight-for-height Wasted Underweight
@ @) 3
Onset of the rainy season 0.002 0.000 -0.000
(0.002) (0.000) (0.001)
[0.444] [0.671] [0.857]
Standardised effect 0.004 0.000 -0.000
Mean (dep. var.) -0.424 0.079 0.291
Identifying observations 53,047 53,047 52,628
Singleton observations 14 14 14
Countries 6 6 6
Interview year range 1990-2018 1990-2018 1990-2018

Note. OLS regression estimates of Equation 2. The data are from the DHS (Croft et al., 2018) for children in agricultural households. The
dependent variables are defined as follows. Weight-for-height is a z-score, representing the standard deviation from the median of the DHS
reference population. Wasted is an indicator for a weight-for-height z-score below -2. Underweight is an indicator for a BMI below 18.5.
Onset of the rainy season is the week of the year when conditions specified in Section 3 are met. All specifications include weather controls,
individual-level controls, climatic area by country by year fixed effects, and location fixed effects at the 0.5° x 0.5° grid-cell level. Standard
errors, clustered at the 0.5° x 0.5° grid-cell level, are in parentheses. p-values are in brackets. Appendix A.l provides further details.
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Table B16: Table 3 — Finer location fixed effects

Dependent variable: Weight-for-height Wasted Underweight
(1) (2) 3)
Onset of the rainy season -0.005 0.000 0.001
(0.006) (0.002) (0.002)
[0.350] [0.924] [0.660]
Standardised effect -0.005 0.000 0.001
Mean (dep. var.) -0.850 0.110 0.142
Identifying observations 58,670 58,670 51,322
Singleton observations 360 360 426
Countries 6 6 6
Interview year range 1995-2018 1995-2018 1992-2022

Note. OLS regression estimates of Equation 2. The data are from the DHS (Croft et al., 2018) for women in agricultural households. The
dependent variables are defined as follows. Weight-for-height is a z-score, representing the standard deviation from the median of the DHS
reference population. Wasted is an indicator for a weight-for-height z-score below -2. Underweight is an indicator for a BMI below 18.5.
Onset of the rainy season is the week of the year of the onset. All specifications include weather controls, individual-level controls, climatic
area by country by year fixed effects, and location fixed effects at the 0.1° x 0.1° grid-cell level. Standard errors, clustered at the 0.5° x 0.5°
grid-cell level, are in parentheses. p-values are in brackets. Appendix A.l provides further details.

Table B17: Table 3 — All women

Dependent variable: Weight-for-height Wasted Underweight
(1) (2) 3)
Onset of the rainy season -0.003 0.000 -0.000
(0.001) (0.000) (0.000)
[0.016] [0.528] [0.902]
Standardised effect -0.007 0.000 -0.000
Mean (dep. var.) -0.666 0.098 0.151
Identifying observations 255,422 255,422 229,479
Singleton observations 0 0 0
Countries 6 6 6
Interview year range 1995-2018 1995-2018 1992-2022

Note. OLS regression estimates of Equation 2. The data are from the DHS (Croft et al., 2018). The dependent variables are defined as follows.
Weight-for-height is a z-score, representing the standard deviation from the median of the DHS reference population. Wasted is an indicator
for a weight-for-height z-score below -2. Underweight is an indicator for a BMI below 18.5. All specifications include weather controls,
individual-level controls, climatic area by country by year fixed effects, and location fixed effects at the 0.1° x 0.1° grid-cell level. Standard
errors, clustered at the 0.5° x 0.5° grid-cell level, are in parentheses. p-values are in brackets. Appendix A.l provides further details.

B.8 Stability of planting months

Figure B13 illustrates the stability of the median planting month over time at the 0.5°x 0.5°
level. Panel A plots the median planting month from the most recent survey wave against the
median from the prior wave, which are separated by approximately three years on average.
Panel B presents the same comparison but uses the earliest available survey wave, showing
stability over an average period of approximately six years. In both panels, the points cluster
tightly around the 45-degree line, demonstrating a high correlation between the median planting

months across survey waves.

67



Figure B13: Stability of the median planting month
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Note. Median planting month over time at the 0.5° x 0.5° level. For locations observed in at least two survey waves, Panel A plots the median
planting month from the most recent wave against the median from the prior wave. Panel B plots the most recent wave against the earliest
available wave to show stability over a longer period. Points are jittered to show density. The 45-degree dashed line represents perfect stability,
where the median planting month does not change between waves. The Pearson’s correlation coefficient is reported in the top-left.

B.9 False onsets: Robustness and alternative agronomical pathways

This section tests whether the main findings are sensitive to the parameters used to define a

false onset. Table 6 re-estimates the analysis using alternative definitions that vary the length

of the search window around the usual onset date and set a more stringent threshold for the dry

spell.



Table B18: Table 6 — Different definitions of false onsets

Dependent variable: Planting (DOY) Seeds Log yields (2020 USD
per hectare)
1) @) 3
A. 70-day search window and 7-day dry spell
Onset of the rainy season 0.430 0.031 -0.025
(0.228) (0.012) (0.007)
[0.060] [0.012] [0.001]
X False onset -0.989 0.086 -0.066
(0.377) (0.054) (0.028)
[0.009] [0.108] [0.018]
Mean (dep. var.) 188.916 3.453 5.744
Identifying observations 125,588 120,650 129,897
Singleton observations 95 216 202
Countries 5 6 6
Planting year range 2009-2022 2009-2022 2008-2022

B. 60-day search window and 10-day dry spell

Onset of the rainy season 0.450 0.030 -0.023
(0.230) (0.012) (0.007)
[0.051] [0.014] [0.001]
X False onset -0.714 0.077 -0.036
(0.316) (0.018) 0.011)
[0.024] [0.000] [0.001]
Mean (dep. var.) 188.923 3.453 5.744
Identifying observations 125,598 120,658 129,907
Singleton observations 85 208 192
Countries 5 6 6
Planting year range 2009-2022 2009-2022 2008-2022

C. 70-day search window and 10-day dry spell

Onset of the rainy season 0.495 0.030 -0.023
(0.223) (0.012) (0.007)
[0.027] [0.012] [0.001]
X False onset -0.702 0.078 -0.036
(0.314) (0.018) 0.011)
[0.026] [0.000] [0.001]
Mean (dep. var.) 188.923 3.453 5.744
Identifying observations 125,598 120,658 129,905
Singleton observations 85 208 194
Countries 5 6 6
Planting year range 2009-2022 2009-2022 2008-2022

Note. OLS regression estimates. The dependent variable for each column is listed at the top. The analysis examines the interaction between the
rainy season onset week and a dummy variable indicating a False onset. Benchmark fixed effects are interacted with the false onset dummy.
All specifications include a full set of weather and plot-level controls. Standard errors, clustered at the 0.5° x 0.5° grid-cell level, are in
parentheses. p-values are in brackets. Appendix A.l provides further details.
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Table B19: False onsets: Alternative pathways

Dependent variable: Fertiliser Pesticide Days from hired workers
(1) 2 3)
Onset of the rainy season -0.000 -0.001 -6.801
(0.002) (0.002) (4.498)
[0.862] [0.573] [0.131]
X False onset -0.071 -0.015 8.740
(0.034) (0.028) (5.504)
[0.040] [0.580] [0.113]
Mean (dep. var.) 0.516 0.066 102.816
Identifying observations 135,059 135,284 117,139
Singleton observations 195 195 149
Countries 6 6 5
Planting year range 2008-2022 2008-2022 2008-2022

Note. OLS regression estimates based on Equation (2). Fertiliser is an indicator variable taking the value 1 if any fertiliser, whether organic
or inorganic, was used, and 0 otherwise. Pesticide is an indicator variable that equals 1 if any pesticide was used and O otherwise. Days from
hired workers, the total number of days per hectare hired workers worked on the plot. Onset of the rainy season is the week of the year when
conditions specified in Section 3 are met. The analysis examines the interaction between the rainy season onset week and a dummy variable
indicating a False onset. All specifications include the main effect of the false onset dummy (absorbed) and fully flexible fixed effects (all
benchmark fixed effects are interacted with the false onset dummy). All specifications include a full set of weather and plot-level controls.
Standard errors, clustered at the 0.5° x 0.5° grid-cell level, are in parentheses. p-values are in brackets. Appendix A.l provides further details.

B.10 Additional results on heterogeneity

Table B20 presents additional results on heterogeneous impacts on productivity, extending the
analysis in Section 6.4. Table B2 1, instead, presents results on heterogeneous impacts on plant-
ing dates. Table B22 presents results on heterogeneous impacts on other adaptation measures,

such as the use of seeds and fertilisers.

Table B20: Additional results on heterogeneous impacts on productivity

Dependent variable: Log yields (2020 USD per hectare)
@ @ 3 “
Onset of the rainy season -0.021 -0.021 -0.020 -0.024
(0.007) (0.007) (0.007) (0.007)
[0.002] [0.002] [0.003] [0.000]
X Manager has worked (past 12 m) 0.003
(0.002)
[0.203]
X Household head has worked (past 12m) 0.002
(0.002)
[0.231]
x Household head is female -0.006
(0.001)
[0.000]
X Household head is educated 0.006
(0.002)
[0.002]
Mean (dep. var.) 5.750 5.743 5.743 5.743
Identifying observations 128,300 129,725 129,784 129,726
Singleton observations 177 179 180 179
Countries 6 6 6 6
Planting year range 2008-2022 2008-2022 2008-2022 2008-2022

Note. OLS regression estimates of Equation 2. The dependent variable is the log of yield, measured in 2020 US dollars per hectare. Onset of
the rainy season is the week of the year when conditions specified in Section 3 are met. All specifications include 0.1° x 0.1° grid-cell fixed
effects and climatic area by country by year fixed effects. All specifications also include weather and plot-level controls; a full list of these
controls is presented in Section 3. Standard errors clustered at the 0.5° X 0.5° grid-cell level are reported in parentheses. p-values are reported
in brackets. Appendix A.l provides detailed information on variables, selected surveys, and weighting procedures.
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Table B21: Heterogeneous effects on planting dates

Dependent variable: Planting DOY
O] @) 3 “ ()
Onset of the rainy season 0.541 0.573 0.569 0.600 0.734
(0.223) (0.223) (0.224) (0.215) (0.276)
[0.016] [0.011] [0.012] [0.005] [0.008]
X Manager is female 0.093
(0.083)
[0.264]
X Manager has formal education -0.034
(0.060)
[0.570]
X Above median assets -0.029
(0.069)
[0.671]
X Irrigated plot -0.832
(0.430)
[0.054]
x Improved seeds 0.361
(0.122)
[0.003]
Mean (dep. var.) 188.934 188.934 188.948 188.753 179.593
Identifying observations 125,609 125,609 125,579 124,531 108,328
Singleton observations 74 74 74 74 99
Countries 5 5 5 5 5
Planting year range 2009-2022 2009-2022 2009-2022 2009-2022 20112022

Note. OLS regression estimates of Equation 2. Planting (DOY) is the approximated first planting day of the year. Onset of the rainy season is
the week of the year when conditions specified in Section 3 are met. All specifications include 0.1° x 0.1° grid-cell fixed effects and climatic
area by country by year fixed effects. All specifications also include weather and plot-level controls; a full list of these controls is presented in
Section 3. Standard errors clustered at the 0.5° x 0.5° grid-cell level are reported in parentheses. p-values are reported in brackets. Appendix
A.1 provides detailed information on variables, selected surveys, and weighting procedures.

Table B22: Heterogeneous impacts on other adaptation measures

Dependent variable: Seeds Fertiliser Pesticide
)] (@) 3) ) (5) (6)
Onset of the rainy season 0.028 0.031 -0.001 -0.002 -0.001 -0.001
(0.011) (0.011) (0.002) (0.002) (0.002) (0.002)
[0.012] [0.006] [0.605] [0.391] [0.461] [0.535]
X Manager has formal education 0.007 0.000 0.001
(0.003) (0.001) (0.000)
[0.011] [0.553] [0.000]
X Above median assets -0.004 0.002 0.001
(0.003) (0.000) (0.000)
[0.213] [0.000] [0.001]
Mean (dep. var.) 3.453 3.453 0.516 0.516 0.066 0.066
Identifying observations 120,669 120,653 135,081 135,048 135,306 135,273
Singleton observations 197 197 173 173 173 173
Countries 6 6 6 6 6 6
Planting year range 2009— 2009— 2008— 2008— 2008— 2008—
2022 2022 2022 2022 2022 2022

Note. OLS regression estimates of Equation 2. Seeds is the log of seed quantity used on the plot, measured in kilograms per hectare. Fertiliser
is an indicator variable taking the value 1 if any fertiliser, whether organic or inorganic, was used, and 0 otherwise. Pesticide is an indicator
variable that equals 1 if any pesticide was used and 0 otherwise. Days from hired workers is the total number of days per hectare hired workers
worked on the plot. Onset of the rainy season is the week of the year when conditions specified in Section 3 are met. All specifications include
0.1° x 0.1° grid-cell fixed effects and climatic area by country by year fixed effects. All specifications also include weather and plot-level
controls; a full list of these controls is presented in Section 3. Standard errors clustered at the 0.5° x 0.5° grid-cell level are reported in
parentheses. p-values are reported in brackets. Appendix A.l provides detailed information on variables, selected surveys, and weighting
procedures.
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C Methodology for Projecting Economic Damages

This appendix details the methodology used to calculate the Net Present Value (NPV) of fu-
ture economic damages from delayed rainy season onsets, as presented in the main text. The
calculation combines empirical estimates from this paper with country-specific projections of

climate and economic variables.

Annual GDP loss. The annual loss in GDP for a given country c in year ¢ is calculated in
absolute monetary terms (constant 2015 USD). It is the product of the total agricultural yield

loss and the projected real value of agricultural GDP. The full calculation for the annual loss is:

Annual Loss.; = (Dt X Byiea) X (1 — 1) X (Au X Ga) 3)
~———— ~—— ——

Gross Yield Loss Irrigation Adjustment ~ Real Agri. Value Added

In this equation, D; represents the cumulative delay in the rainy season onset in weeks, and
Byiela 18 the semi-elasticity of crop yield to this delay (a 2.11% yield loss per week). This gross
loss is adjusted by I;, the projected share of irrigated agricultural land. To forecast /; through
2050, several functional forms (linear, quadratic, exponential, logistic, Gompertz) are fitted to
the historical trend from the HYDE 3.2 dataset (Klein Goldewijk et al., 2017). The model with
the best fit for each country, determined by the lowest Bayesian Information Criterion (BIC), is

used to extrapolate the trend.

The final two components, A; and G, represent the projected real share of agriculture in the
economy and the projected real GDP (in constant 2015 USD) for year ¢. The historical portion
of these series (up to 2024) is constructed using World Bank indicators. To derive the historical
real agricultural share (A;), an implicit GDP deflator is calculated by dividing nominal GDP by
real GDP. The real agricultural share is then the nominal agricultural value added divided by this
deflator, all divided by real GDP. To address missing data for Ethiopia’s nominal agricultural
value for 2023 and 2024, values are imputed by applying the country’s 10-year average growth
rate from 2013-2022. Finally, to project both A; and G forward from 2025 to 2050, the annual
growth rates implied by the FAO’s long-term agricultural and macroeconomic scenarios are

applied to the final historical values.
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Figure C1: Historical and projected share of irrigated cropland
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Note. The figure shows the historical and projected share of total cropland that is irrigated for each country. The historical data are from the
HYDE 3.2 dataset (Klein Goldewijk et al., 2017). The projection from 2018 to 2050 is a forecast based on the best-fitting time series model
(selected via BIC) for each country’s historical trend.

Scenario framework. To quantify the economic benefits of climate mitigation, the analysis
compares two distinct future pathways from 2024 to 2050. These are adapted from the Food
and Agriculture Organization’s (FAO) long-term global scenarios (FAO, 2018), which are built
upon the Shared Socio-economic Pathways (SSPs) framework, formulated by the Intergovern-
mental Panel on Climate Change Sixth Assessment Report (IPCC, 2021). The scenarios differ
in their assumptions for future economic development and for the magnitude of the climate
shock itself.

1. Business as Usual (BAS): This scenario is adapted from the I[IPCC’s middle of the road
pathway (corresponding to SSP2), which assumes that socio-economic and technologi-
cal trends continue along historical patterns with uneven progress toward sustainability
goals. For this scenario, I assume the delay in the onset of the rainy season is based on

the projected delay shown in Figure B1.

2. Toward Sustainability (TS): This scenario is adapted from the IPCC’s sustainability
pathway (corresponding to SSP1), which assumes a global shift toward more equitable
development and respect for environmental boundaries. To reflect the success of these
mitigation efforts, the expected delay in the rainy season onset is assumed to be halved

relative to the BAS scenario.
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In Equation 3, these scenarios determine the future values for the cumulative delay (D), the
agricultural share (A;), and real GDP (G,), allowing for a direct comparison of their economic

consequences.

Social discount rate and NPV. To calculate the Net Present Value (NPV) of this stream of
future damages, annual losses must be discounted to the present day. The social discount rate,
¢, 1S not assumed to be constant but is derived from the DICE-2023 model’s Ramsey-rule
framework, which accounts for time-varying consumption growth and climate-related capital

risks. The formula for the discount rate in year ¢ is:

1
e =p + Cbgt - §¢203t + ﬁclimﬂ-capital (4)

The specific parameter values from the DICE-2023 framework are as follows: the rate of pure
time preference p = 0.001; the elasticity of the marginal utility of consumption ¢ = 0.95; the
variance of the logarithm of consumption growth o = (0.01)?; a parameter for the systematic
risk of climate damages [S.;,» = 0.5; and the risk premium on capital 74pitqs = 0.05. The
model also incorporates a time-varying growth rate of per capita consumption, g;, which is

assumed to decline linearly from 1.9% to 1.7% over the projection period.

The NPV of damages is then the sum of all discounted annual GDP losses from the start year
(to = 2024) to the end year (T' = 2050):

NPV — Z Annual Loss; 5)
(14+1;)

t=to ZtO
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Figure C2: The mitigating effect of irrigation expansion
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Note. Benefit of future irrigation expansion under the Business as Usual scenario. The dashed line shows a pessimistic counterfactual where
the share of irrigated land is 0. The solid line shows the main projection, which includes a data-driven forecast of irrigation expansion based
on historical trends. The shaded area between the lines represents the irrigation benefit—the total value of damages averted due to this specific
form of adaptation, quantified in millions of US dollars.

Uncertainty analysis. To provide a sense of the uncertainty surrounding these projections, two
sensitivity analyses are conducted. First, uncertainty in the damage coefficient is assessed by
recalculating the NPV of damages using the lower and upper bounds of the 95% confidence
interval from the benchmark regression. Second, to model uncertainty in future adaptation, an
optimistic scenario is run where the damage coefficient, fyicid, 1S assumed to decrease linearly
to zero between 2024 and 2050.
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Figure C3: Sensitivity of future damages to coefficient uncertainty
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Note. Statistical uncertainty of the damage projection under the Business as Usual scenario. The solid line is the central projection, calculated
using the point estimate of a 2% yield loss per week of onset delay. The shaded area represents the 95% confidence interval, with the upper
and lower bounds calculated by re-running the projection using the corresponding bounds of the yield loss coefficient from the benchmark
regression in Table 1.

Table C1: Uncertainty around estimates

Country Lower Bound (95% CI) Point Estimate Upper Bound (95% CI)
Ethiopia 2.53% 6.83% 11.12%
Malawi 1.99% 5.37% 8.75%
Mali 3.70% 9.96% 16.23%
Niger 1.42% 3.81% 6.21%
Nigeria 2.62% 7.06% 11.50%
Tanzania 0.75% 2.02% 3.29%

Note. The table shows the projected NPV of damages by 2050 as a percentage of 2024 GDP under the Business as Usual scenario. Each
column uses a different value for the yield loss per week of onset delay, corresponding to the point estimate and the 95% confidence interval
from the benchmark regression.
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